962
Views
3
CrossRef citations to date
0
Altmetric
Articles

Selection of alternative fuel taxis: a hybridized approach of life cycle sustainability assessment and multi-criteria decision making with neutrosophic sets

, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 833-846 | Received 14 Dec 2020, Accepted 08 Jun 2021, Published online: 27 Jul 2021

References

  • Abdel-Baset, M., Chang, V., Gamal, A., & Smarandache, F. (2019). An integrated neutrosophic ANP and VIKOR method for achieving sustainable supplier selection: A case study in importing field. Computers in Industry, 106, 94–110. https://doi.org/10.1016/j.compind.2018.12.017
  • Abdel-Basset, M., Manogaran, G., & Mohamed, M. (2019). A neutrosophic theory based security approach for fog and mobile-edge computing. Computer Networks, 157, 122–132. https://doi.org/10.1016/j.comnet.2019.04.018
  • Abdel-Basset, M., Manogaran, G., Mohamed, M., & Chilamkurti, N. (2018a). Three-way decisions based on neutrosophic sets and AHP-QFD framework for supplier selection problem. Future Generation Computer Systems, 89, 19–30. https://doi.org/10.1016/j.future.2018.06.024
  • Abdel-Basset, M., Mohamed, M., & Sangaiah, A. K. (2018b). Neutrosophic AHP-Delphi Group decision making model based on trapezoidal neutrosophic numbers. Journal of Ambient Intelligence and Humanized Computing, 9(5), 1427–1443. https://doi.org/10.1007/s12652-017-0548-7
  • Abdella, G. M., Kucukvar, M., Ismail, R., Abdelsalam, A. G., Onat, N. C., & Dawoud, O. (2021a). A mixed model-based Johnson’s relative weights for eco-efficiency assessment: The case for global food consumption. Environmental Impact Assessment Review, 89, 106588. https://doi.org/10.1016/j.eiar.2021.106588
  • Abdella, G. M., Kucukvar, M., Kutty, A. A., Abdelsalam, A. G., Sen, B., Bulak, M. E., & Onat, N. C. (2021b). A novel approach for developing composite eco-efficiency indicators: The case for US food consumption. Journal of Cleaner Production, 299, 126931. https://doi.org/10.1016/j.jclepro.2021.126931
  • Abdella, G. M., Kucukvar, M., Onat, N. C., Al-Yafay, H. M., & Bulak, M. E. (2020). Sustainability assessment and modeling based on supervised machine learning techniques: The case for food consumption. Journal of Cleaner Production, 251. https://doi.org/10.1016/j.jclepro.2019.119661
  • Aboushaqrah, N. N. M., Onat, N. C., Kucukvar, M., & Jabbar, R. (2020). Life cycle sustainability assessment of sport utility vehicles: The case for Qatar. Advances in Intelligent Systems and Computing 1091, 279–287. https://doi.org/10.1007/978-3-030-35543-2_22
  • Ali, M., Dat, L. Q., Son, L. H., & Smarandache, F. (2018). Interval complex neutrosophic set: Formulation and applications in decision-making. International Journal of Fuzzy Systems, 20(3), 986–999. https://doi.org/10.1007/s40815-017-0380-4
  • Bauer, G. S., Greenblatt, J. B., & Gerke, B. F. (2018). Cost, energy, and environmental impact of automated electric taxi fleets in Manhattan. Environmental Science & Technology, 52(8), 4920–4928.
  • Biswas, P., Pramanik, S., & Giri, B. C. (2016). TOPSIS method for multi-attribute group decision-making under single-valued neutrosophic environment. Neural Computing and Applications, 27(3), 727–737. https://doi.org/10.1007/s00521-015-1891-2
  • Bolturk, E., & Kahraman, C. (2018a). Interval-valued neutrosophic AHP with possibility degree method. Journal of the Analytic Hierarchy Process, 10, 431–446. https://doi.org/10.13033/ijahp.v10i3.545
  • Bolturk, E., & Kahraman, C. (2018b). A novel interval-valued neutrosophic AHP with cosine similarity measure. Soft Computing, 22(15), 4941–4958. https://doi.org/10.1007/s00500-018-3140-y
  • Burchart-Korol, D., Jursova, S., Fole, P., & Pustejovska, P. (2020). Life cycle impact assessment of electric vehicle battery charging in European Union Countries. Journal of Cleaner Production, 257, 1–15. https://doi.org/10.1016/j.jclepro.2020.120476
  • Cihat Onat, N., Aboushaqrah, N. N. M., Kucukvar, M., Tarlochan, F., & Magid Hamouda, A. (2020). From sustainability assessment to sustainability management for policy development: The case for electric vehicles. Energy Conversion and Management, 216, 112937. https://doi.org/10.1016/j.enconman.2020.112937
  • CNN (2017). These countries want to ban gas and diesel cars. Retrieved December 12, 2017, form http://money.cnn.com/2017/09/11/autos/countries-banning-diesel-gas-cars/index.html.
  • Deli, I. (2017). Interval-valued neutrosophic soft sets and its decision making. International Journal of Machine Learning and Cybernetics, 8(2), 665–676. https://doi.org/10.1007/s13042-015-0461-3
  • Erdoğan, M., & Kaya, İ. (2016). Evaluating Alternative-Fuel Busses for Public Transportation in Istanbul Using Interval Type-2 Fuzzy AHP and TOPSIS. Journal of Multiple-Valued Logic and Soft Computing, 26, 625.
  • Finkbeiner, M., Schau, E. M., Lehmann, A., & Traverso, M. (2010). Towards Life Cycle Sustainability Assessment. Sustainability, 2(10), 3309–3322. https://doi.org/10.3390/su2103309
  • Giljum, S., Wieland, H., Lutter, S., Eisenmenger, N., Schandl, H., & Owen, A. (2019). The impacts of data deviations between MRIO models on material footprints: A comparison of EXIOBASE, Eora, and ICIO. Journal of Industrial Ecology, 23(4), 946–958. https://doi.org/10.1111/jiec.12833
  • Greenblatt, J. B., & Saxena, S. (2015). Autonomous taxis could greatly reduce greenhouse-gas emissions of US light-duty vehicles. Nature Climate Change, 5(9), 860–863.
  • Hawkins, T. R., Singh, B., Majeau-Bettez, G., & Strømman, A. H. (2013). Comparative environmental life cycle assessment of conventional and electric vehicles. Journal of Industrial Ecology., 17(1), 53–64. https://doi.org/10.1111/j.1530-9290.2012.00532.x
  • Jiang, Y., Zhang, J., Asante, D., & Yang, Y. (2019). Dynamic evaluation of low-carbon competitiveness (LCC) based on improved technique for order preference by similarity to an ideal solution (TOPSIS) method: A case study of Chinese steelworks. Journal of Cleaner Production, 217, 484–492. https://doi.org/10.1016/j.jclepro.2019.01.054
  • Karaaslan, F., & Hayat, K. (2018). Some new operations on single-valued neutrosophic matrices and their applications in multi-criteria group decision making. Applied Intelligence, 48(12), 4594–4614. https://doi.org/10.1007/s10489-018-1226-y
  • Kelly, C., Onat, N. C., & Tatari, O. (2019). Water and carbon footprint reduction potential of renewable energy in the United States: A policy analysis using system dynamics. Journal of Cleaner Production, 228, 910–926. https://doi.org/10.1016/j.jclepro.2019.04.268
  • Kucukvar, M., Haider, M. A., & Onat, N. C. (2017). Exploring the material footprints of national electricity production scenarios until 2050: The case for Turkey and UK. Resources, Conservation and Recycling, 125, 251–263. https://doi.org/10.1016/j.resconrec.2017.06.024
  • Kucukvar, M., Noori, M., Egilmez, G., & Tatari, O. (2014). Stochastic decision modeling for sustainable pavement designs. The International Journal of Life Cycle Assessment, 19(6), 1185–1199. https://doi.org/10.1007/s11367-014-0723-4
  • Kucukvar, M., Onat, N. C., Abdella, G. M., & Tatari, O. (2019). Assessing regional and global environmental footprints and value added of the largest food producers in the world. Resources, Conservation and Recycling, 144, 187–197. https://doi.org/10.1016/j.resconrec.2019.01.048
  • Kucukvar, M., & Tatari, O. (2013). Towards a triple bottom-line sustainability assessment of the U.S. construction industry. The International Journal of Life Cycle Assessment, 18(5), 958–972. https://doi.org/10.1007/s11367-013-0545-9
  • Kutlu Gündoğdu, F., & Kahraman, C. (2020). A novel spherical fuzzy analytic hierarchy process and its renewable energy application. Soft Computing, 24(6), 4607–4621. https://doi.org/10.1007/s00500-019-04222-w
  • Kutty, A. A., Abdella, G. M., Kucukvar, M., Onat, N. C., & Bulu, M. (2020). A system thinking approach for harmonizing smart and sustainable city initiatives with United Nations sustainable development goals. Sustainable Development, 28(5), 1347–1365. https://doi.org/10.1002/sd.2088
  • Lin, C.-C., Wang, W.-C., & Yu, W.-D. (2008). Improving AHP for construction with an adaptive AHP approach (A3). Automation in Construction, 17(2), 180–187. https://doi.org/10.1016/j.autcon.2007.03.004
  • Ma, Y., Ke, R. Y., Han, R., & Tang, B. J. (2017). The analysis of the battery electric vehicle's potentiality of environmental effect: A case study of Beijing from 2016 to 2020. Journal of Cleaner Production, 145, 395–406.
  • Melaina, M., & Bremson, J. (2008). Refueling availability for alternative fuel vehicle markets: Sufficient urban station coverage. Energy Policy, 36(8), 3233–3241. https://doi.org/10.1016/j.enpol.2008.04.025
  • Minx, J. C., Wiedmann, T., Wood, R., Peters, G. P., Lenzen, M., Owen, A., ... & Ackerman, F. (2009). Input–output analysis and carbon footprinting: An overview of applications. Economic Systems Research, 21(3), 187–216.
  • Onat, N. C. (2015). A macro-level sustainability assessment framework for optimal distribution of alternative passenger vehicles. University of Central Florida.
  • Onat, N. C., Aboushaqrah, N. N., Kucukvar, M., Tarlochan, F., & Hamouda, A. M. (2020). From sustainability assessment to sustainability management for policy development: The case for electric vehicles. Energy Conversion and Management, 216, 112937.
  • Onat, N. C., Gumus, S., Kucukvar, M., & Tatari, O. (2016a). Application of the TOPSIS and intuitionistic fuzzy set approaches for ranking the life cycle sustainability performance of alternative vehicle technologies. Sustainable Production and Consumption, 6, 12–25. https://doi.org/10.1016/j.spc.2015.12.003
  • Onat, N. C., & Kucukvar, M. (2020). Carbon footprint of construction industry: A global review and supply chain analysis. Renewable and Sustainable Energy Reviews, 124, 109783. https://doi.org/10.1016/j.rser.2020.109783
  • Onat, N. C., Kucukvar, M., Aboushaqrah, N. N. M., & Jabbar, R. (2019). How sustainable is electric mobility? A comprehensive sustainability assessment approach for the case of Qatar. Applied Energy, 250, 461–477. https://doi.org/10.1016/j.apenergy.2019.05.076
  • Onat, N. C., Kucukvar, M., & Afshar, S. (2019). Eco-efficiency of electric vehicles in the United States: A life cycle assessment based principal component analysis. Journal of Cleaner Production, 212, 515–526. https://doi.org/10.1016/j.jclepro.2018.12.058
  • Onat, N. C., Kucukvar, M., Halog, A., & Cloutier, S. (2017a). Systems thinking for life cycle sustainability assessment: A review of recent developments. Sustainability, 9(5), 706. 2017, Page https://doi.org/10.3390/su9050706
  • Onat, N. C., Kucukvar, M., & Tatari, O. (2014). Towards Life Cycle Sustainability Assessment of Alternative Passenger Vehicles. Sustainability. Sustainability, 6(12), 9305–9342. https://doi.org/10.3390/su6129305
  • Onat, N. C., Kucukvar, M., & Tatari, O. (2015). Conventional, hybrid, plug-in hybrid or electric vehicles? State-based comparative carbon and energy footprint analysis in the United States. Applied Energy, 150, 36–49. https://doi.org/10.1016/j.apenergy.2015.04.001
  • Onat, N. C., Kucukvar, M., & Tatari, O. (2016b). Uncertainty-embedded dynamic life cycle sustainability assessment framework: An ex-ante perspective on the impacts of alternative vehicle options. Energy, 112, 715–728. https://doi.org/10.1016/j.energy.2016.06.129
  • Onat, N. C., Kucukvar, M., & Tatari, O. (2018). Well-to-wheel water footprints of conventional versus electric vehicles in the United States: A state-based comparative analysis. Journal of Cleaner Production, 204, 788–802. https://doi.org/10.1016/j.jclepro.2018.09.010
  • Onat, N. C., Kucukvar, M., Tatari, O., & Egilmez, G. (2016c). Integration of system dynamics approach toward deepening and broadening the life cycle sustainability assessment framework: a case for electric vehicles. The International Journal of Life Cycle Assessment, 21(7), 1009–1034. https://doi.org/10.1007/s11367-016-1070-4
  • Onat, N. C., Kucukvar, M., Tatari, O., & Zheng, Q. P. (2016d). Combined application of multi-criteria optimization and life-cycle sustainability assessment for optimal distribution of alternative passenger cars in U. Journal of Cleaner Production, 112, 291–307. https://doi.org/10.1016/j.jclepro.2015.09.021
  • Onat, N. C., Kucukvar, M., Toufani, P., & Haider, M. A. (2017b). Carbon footprint analysis of electric taxis in Istanbul. In International conference in industrial engineering and operations management. IEOM Society, Bogota.
  • Qatar Green Leaders (2017). The next big obstacle for electric vehicles? Charging infrastructure. http://www.qatargreenleaders.com/news/sustainability-news/1438-the-next-big-obstacle-for-electric-vehicles-charging-infrastructure (accessed 12.12.17).
  • Reuter, B., Schönsteiner, K., Wagner, M., Gleyzes, D., Massier, T., Hamacher, T., & Lienkamp, M. (2014). Life cycle greenhouse gas analysis for automotive applications—a case study for taxis in Singapore. International Journal of Smart Grid and Clean Energy, 3(2), 127–134.
  • Salama, A. A., & Alblowi, S. A. (2012). Neutrosophic set and neutrosophic topological spaces. IOSR Journal of Mathematics, 3, 31–35.
  • Sen, B., Kucukvar, M., Onat, N. C., & Tatari, O. (2020). Life cycle sustainability assessment of autonomous heavy‐duty trucks. Journal of Industrial Ecology, 24(1), 149–164. https://doi.org/10.1111/jiec.12964
  • Sen, B., Onat, N. C., Kucukvar, M., & Tatari, O. (2019). Material footprint of electric vehicles: A multiregional life cycle assessment. Journal of Cleaner Production, 209, 1033–1043. https://doi.org/10.1016/j.jclepro.2018.10.309
  • Shi, X., Wang, X., Yang, J., & Sun, Z. (2016). Electric vehicle transformation in Beijing and the comparative eco-environmental impacts: A case study of electric and gasoline powered taxis. Journal of Cleaner Production, 137, 449–460. https://doi.org/10.1016/j.jclepro.2016.07.096
  • Smarandache, F. (1998). Neutrosophy: Neutrosophic probability, set, and logic. Analytic Synthesis & Synthetic Analysis. American Research Press.
  • Smarandache, F. (2019). About nonstandard neutrosophic logic (Answers to Imamura’s “Note on the Definition of Neutrosophic Logic”).
  • Wang, Z., Hao, H., Gao, F., Zhang, Q., Zhang, J., & Zhou, Y. (2019). Multi-attribute decision making on reverse logistics based on DEA-TOPSIS: A study of the Shanghai End-of-life vehicles industry. Journal of Cleaner Production, 214, 730–737. https://doi.org/10.1016/j.jclepro.2018.12.329
  • Wood, R., Hawkins, T. R., Hertwich, E. G., & Tukker, A. (2014). Harmonising national input—output tables for consumption-based accounting — experiences from exiopol. Economic Systems Research, 26(4), 387–409. https://doi.org/10.1080/09535314.2014.960913
  • Yang, H.-L., Zhang, C.-L., Guo, Z.-L., Liu, Y.-L., & Liao, X. (2017). A hybrid model of single valued neutrosophic sets and rough sets: single valued neutrosophic rough set model. Soft Computing, 21(21), 6253–6267. https://doi.org/10.1007/s00500-016-2356-y
  • Yilmaz, M. K., Kusakci, A. O., Tatoglu, E., Icten, O., & Yetgin, F. (2019). Performance evaluation of real estate investment trusts using a hybridized interval Type-2 Fuzzy AHP-DEA approach: The case of Borsa Istanbul. International Journal of Information Technology & Decision Making, 18(06), 1785–1820. https://doi.org/10.1142/S021922019500354
  • Zamagni, A., Pesonen, H.-L., & Swarr, T. (2013). From LCA to life cycle sustainability assessment: Concept, practice and future directions. The International Journal of Life Cycle Assessment, 18(9), 1637–1641. https://doi.org/10.1007/s11367-013-0648-3