338
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

Comparison of the effect of topical bevacizumab and sorafenib in experimental corneal neovascularization

ORCID Icon, , , &
Pages 223-228 | Received 25 Mar 2020, Accepted 21 Apr 2020, Published online: 13 May 2020

References

  • Zhang SX, Ma JX. Ocular neovascularization: implication of endogenous angiogenic inhibitors and potential therapy. Prog Retin Eye Res 2007;26:1–37.
  • Wagoner MD. Chemical injuries of the eye: current concepts in pathophysiology and therapy. Surv Ophthalmol 1997;41:275–313.
  • Klenkler B, Sheardown H. Growth factors in the anterior segment: role in tissue maintenance, wound healing and ocular pathology. Exp Eye Res 2004;79:677–688.
  • Rolando M, Zierhut M. The ocular surface and tear film and their dysfunction in dry eye disease. Surv Ophthalmol 2001;45:203–210.
  • Philipp W, Speicher L, Humpel C. Expression of vascular endothelial growth factor and its receptors in inflamed and vascularized human corneas. Invest Ophthalmol Vis Sci 2000;41:2514–2522.
  • Quoc TH, Calvin JK. Vascular endothelial growth factor: biology and therapeutic applications. Int J Biochem Cell Biol 2007;39:1349–1357.
  • Shiro A, Richard R, Masatoshi K, et al. Requirement for vascular endothelial growth factor in wound- and inflammation-related corneal neovascularization. Invest Ophthalmol Vis Sci 1998;39:18–22.
  • Gan L, Fagerholm P, Palmblad J. Vascular endothelial growth factor (VEGF) and its receptor VEGFR-2 in the regulation of corneal neovascularization and wound healing. Acta Ophthalmol Scand 2004;82:557–563.
  • Benezra D, Griffin BW, Maftazir G, et al. Topical formulations of novel angiostatic steroids inhibit rabit corneal neovascularization. Invest Ophthalmol Vis Sci 1997;38:1954–1962.
  • Demir T, Celiker UÖ, Kükner A, et al. Effect of Octreotide on experimental corneal neovascularization. Acta Ophthalmol Scand 1999;77:386–390.
  • Qian Y, Dekaris I, Yamagami S, et al. Topical soluble tumor necrosis factor receptor type I suppresses ocular chemokine gene expression and rejection of allogeneic corneal transplants. Arch Ophthalmol 2000;118:1666–1671.
  • Becker MD, Kruse FE, Azzam L, et al. In vivo significance of ICAM-1 dependent leukocyte adhesion in early corneal angiogenesis. Invest Ophthalmol Vis Sci 1999;40:612–618.
  • Benelli U, Bocci G, Danesi R, et al. The heparan sulfate suleparoide inhibits rat corneal angiogenesis and in vitro neovascularization. Exp Eye Res 1998;67:133–142.
  • D’Amato RJ, Loughnan MS, Flynn E, et al. Thalidomide is an inhibitör of angiogenesis. Proc Natl Acad Sci USA 1994;91:4082–4085.
  • Fotsis T, Pepper M, Adlercreutz H, et al. Genistein, a dietary-derived inhibitor of in vitro angiogenesis. Proc Natl Acad Sci USA 1993;90:2690–2694.
  • Kwon YS, Hong HS, Kim JC, et al. Inhibitory effect of rapamycin on corneal neovascularization in vitro and in vivo. Invest Ophthalmol Vis Sci 2005;46:454–460.
  • Ambati BK, Joussen AM, Ambati J, et al. Angiostatin inhibits and regresses corneal neovascuarization. Arch Ophthalmol 2002;120:1063–1068.
  • Joussen AM, Kruse FE. Topical application of methotrexate for inhibition of corneal angiogenesis. Graefe’s. Arch Clin Exp Ophthalmol 1999;237:920–927.
  • Habot-Wilner Z, Barequet IS, Ivanir Y. The inhibitory effect of different concentrations of topical bevacizumab on corneal neovascularization. Acta Ophthalmol 2010;88:862–867.
  • Chung EJ, Yoo S, Lim HJ, et al. Inhibition of choroidal neovascularisation in mice by systemic administration of the multikinase inhibitor, sorafenib. Br J Ophthalmol 2009;93:958–963.
  • Thiele S, Liegl RG, König S, et al. Multikinase inhibitors as a new approach in neovascular age-related macular degeneration (AMD) treatment: in vitro safety evaluations of axitinib, pazopanib and sorafenib for intraocular use. Klin Monbl Augenheilkd 2013;230:247–254.
  • Hashemian MN, Z-Mehrjardi H, Moghimi S. Prevention of corneal neovascularization: comparison of different doses of subconjunctival bevacizumab with its topical form in experimental rats. Ophthalmic Res 2011;46:50–54.
  • Gohto Y, Obana A, Kaneda K, et al. Photodynamic effect of a new photosensitizer ATX-S10 on corneal neovascularization. Exp Eye Res 1998;67:313–322.
  • Epstein RJ, Stulting RD, Hendricks RL, et al. Corneal neovascularization: pathogenesis and inhibition. Cornea 1987;6:250–257.
  • Gerber HP, Ferrara N. Pharmacology and pharmacodynamics of bevacizumab as monotherapy or in combination with cytotoxic therapy in preclinical studies. Cancer Res 2005;65:671–678.
  • Folkman J. Fundamental concepts of the angiogenic process. Curr Mol Med 2003;3:643–651.
  • Usui T, Ishida S, Yamashiro K. VEGF164(165) as the pathological isoform: differential leukocyte and endothelial responses through VEGFR1 and VEGFR2. Invest Ophthalmol Vis Sci 2004;45:368–337.
  • Koenig Y, Bock F, Horn F, et al. Short- and long-term safety profile and efficacy of topical bevacizumab (Avastin®) eye drops against corneal neovascularization. Graefes Arch Clin Exp Ophthalmol 2009;247:1375–1382.
  • DeStafeno JJ, Kim T. Topical bevacizumab therapy for corneal neovascularization. Arch Opth 2007;125:834–836.
  • Bock F, Koenig Y, Kruse F, et al. Bevacizumab (Avastin) eye drops inhibit corneal neovascularization. Graefes Arch Clin Exp Ophthalmol 2008;246:281–284.
  • Uy HS, Chan PS, Ang RE. Topical bevacizumab and ocular surface neovascularization in patients with Stevens-Johnson syndrome. Cornea 2008;27:70–73.
  • Dastjerdi MH, Sadrai Z, Saban DR, et al. Corneal penetration of topical and subconjunctival bevacizumab. Invest Ophthalmol Vis Sci 2011;52:8718–8723.
  • Seo JW, Chung SH, Choi JS, et al. Inhibition of corneal neovascularization in rats by systemic administration of sorafenib. Cornea 2012;31:907–912.
  • Lledó Riquelme M, Campos-Mollo E, Fernández-Sánchez L. Topical axitinib is a potent inhibitor of corneal neovascularization. Clin Exp Ophthalmol 2018;46:1063–1074.
  • Sahan B, Ciftci F, Eyuboglu S, et al. Comparison of the effects of dovitinib and bevacizumab on reducing neovascularization in an experimental rat corneal neovascularization model. Cornea 2019;38:1161–1168.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.