6,363
Views
1
CrossRef citations to date
0
Altmetric
Review Articles

Human-relevant approaches to assess eye corrosion/irritation potential of agrochemical formulations

, , , , , , & show all
Pages 145-167 | Received 03 Oct 2020, Accepted 22 Mar 2021, Published online: 20 Apr 2021

References

  • Joint Meeting of the Chemicals Committee and the Working Group on Chemicals: Pesticides and Biotechnology. Guidance document on an integrated approach on testing and assessment (IATA) for serious eye damage and eye irritation series on testing assessment no. 263. Paris (France): Organisation for Economic Co-operation and Development; 2017.
  • Worakul N, Robinson JR. Ocular pharmacokinetics/pharmacodynamics. Eur J Pharm Biopharm 1997;44:71–83.
  • McGhee CNJ. An overview of topical ophthalmic drugs and the therapeutics of ocular infection. Ocul Ther 2008;118:1862–1867.
  • US Environmental Protection Agency. Health effects test guidelines OPPTS 870.2400 acute eye irritation. Washington (DC): US Environmental Protection Agency; 1998.
  • Organisation for Economic Co-operation and Development. Test no. 405: acute eye irritation/corrosion. Paris (France): OECD Publishing; 2017.
  • US Environmental Protection Agency. Efforts to reduce animal testing at EPA [Internet]. Washington (DC): US Environmental Protection Agency; 2019 [cited 2020 Mar 23]. Available from: https://www.epa.gov/research/efforts-reduce-animal-testing-epa
  • Kolle SN, Moreno MCR, Mayer W, et al. The EpiOcular™ Eye Irritation Test is the method of choice for the in vitro eye irritation testing of agrochemical formulations: correlation analysis of EpiOcular Eye Irritation Test and BCOP Test Data according to the UN GHS, US EPA and Brazil ANVISA classification schemes. Altern Lab Anim 2015;43:181–198.
  • Kolle SN, Van Cott A, van Ravenzwaay B, et al. Lacking applicability of in vitro eye irritation methods to identify seriously eye irritating agrochemical formulations: results of bovine cornea opacity and permeability assay, isolated chicken eye test and the EpiOcular™ ET-50 method to classify according to UN GHS. Regul Toxicol Pharmacol 2017;85:33–47.
  • Settivari RS, Amado RA, Corvaro M, et al. Tiered application of the neutral red release and EpiOcular™ assays for evaluating the eye irritation potential of agrochemical formulations. Regul Toxicol Pharmacol 2016;81:407–420.
  • Choksi N, Daniel A, Lebrun S, et al. Performance of the OptiSafe ocular irritation assay in a three-laboratory validation study. Research Triangle Park (NC): National Toxicology Program; 2018.
  • Office of Prevention Pesticides and Toxic Substances. 870.2400 Acute Eye Irritation. Washington (DC): US Environmental Protection Agency; 1998.
  • Draize JH, Woodard G, Calvery HO. Methods for the study of irritation and toxicity of substances applied topically to the skin and mucous membranes. J Pharmacol Exp Ther 1944;82:377–390.
  • Choksi N, Clippinger AJ, Gehen S, et al. Developing a defined approach for eye irritation testing. SOT Abstr Number/Poster Board Number 2198/P556 [Internet]. 2020. Available from: https://www.piscltd.org.uk/wp-content/uploads/2020/03/SOT2020_Choksi-Clippinger-et-al.pdf
  • Calabrese EJ. Principles of animal extrapolation. Boca Raton (FL): Taylor & Francis; 1991.
  • Larry AM, Nemiroff B, John LU, et al. Role of the rabbit nictitating membrane in ocular irritancy testing. Cutan Ocul Toxicol 1987;6:43–56.
  • Carpenter CP, Smyth HF. Chemical burns of the rabbit cornea. Am J Ophthalmol 1946;29:1363–1372.
  • Huhtala A, Salminen L, Tähti H, et al. Corneal models for the toxicity testing of drugs and drug releasing materials. In: Ashammakhi N, ed. Topics in multifunctional biomaterials and devices. 2008. Available from: www.oulu.fi
  • Luechtefeld T, Maertens A, Russo DP, et al. Analysis of draize eye irritation testing and its prediction by mining publicly available 2008–2014 REACH data. Altern Anim Exp 2016;33:123–134.
  • Weil CS, Scala RA. Study of intra- and interlaboratory variability in the results of rabbit eye and skin irritation tests. Toxicol Appl Pharmacol 1971;19:276–360.
  • Griffith JF. Freeberg Fe. Empirical and experimental bases for selecting the low volume eye irritation test as the validation standard for in vitro methods. In: Goldberg AM, ed. In Vitro Toxicology: Approaches to Validation. 1st ed. New York (NY): Mary Ann Libert; 1987:303–311.
  • Adriaens E, Barroso J, Eskes C, et al. Retrospective analysis of the Draize test for serious eye damage/eye irritation: importance of understanding the in vivo endpoints under un GHS/EU CLP for the development and evaluation of in vitro test methods. Arch Toxicol 2014;88:701–723.
  • Barroso J, Pfannenbecker U, Adriaens E, et al. Cosmetics Europe compilation of historical serious eye damage/eye irritation in vivo data analysed by drivers of classification to support the selection of chemicals for development and evaluation of alternative methods/strategies: the Draize eye test Reference Database (DRD). Arch Toxicol 2017;91:521–547.
  • Clelatt KN. Textbook of veterinary ophthalmology. Philadelphia (PA): Lea & Febiger; 1981.
  • Prince JH, Diesem CD, Eglitis I, et al. Anatomy and histology of the eye and orbit in domestic animals. 3rd ed. Springfield (IL): Charles C. Thomas; 1960.
  • Swanston DW, Eye irritancy testing. In: Balls M, Riddell RJ, Worden AN, et al., eds. Animals and alternatives in toxicity testing. New York (NY): Academic Press; 1983:337–367.
  • Buehler EV, Newmann EA. A comparison of eye irritation in monkeys and rabbits. Toxicol Appl Pharmacol 1964;6:701–710.
  • Organisation for Economic Co-operation and Development. Test no. 492: reconstructed human cornea-like epithelium (RhCE) test method for identifying chemicals not requiring classification and labelling for eye irritation or serious eye damage. Paris (France): OECD Publishing; 2015.
  • EURL ECVAM Science Advisory Committee. ESAC opinion on the EURL ECVAM eye irritation validation study (EIVS) on EpiOcularTM EIT and SkinEthicTM HCE. Ispra (Italy): European Comission; 2014.
  • Van Rompay AR, Alépée N, Nardelli L, et al. CON4EI: SkinEthic™ Human Corneal Epithelium Eye Irritation Test (SkinEthic™ HCE EIT) for hazard identification and labelling of eye irritating chemicals. Toxicol in Vitro 2018;49:11–20.
  • LabCyte Validation Management Team. Me-too validation report: validation study for LabCyte Cornea-Model24 eye irritation test. Kawasaki (Japan): Japanese Center for the Validation of Alternative Methods; 2017.
  • Joint Meeting of the Chemicals Committee and the Working Group on Chemicals: Pesticides and Biotechnology. Report of the validation study of the MCTT human corneal-like epithelium eye irritation test model and report of the validation of the peer review. Paris (France): Organisation for Economic Co-operation and Development; 2019.
  • Office of Pesticide Programs. Use of an alternative testing framework for classification of eye irritation potential of EPA pesticide products. Washington (DC): US Environmental Protection Agency; 2015.
  • Kandarova H, Letasiova S, Adriaens E, et al. CON4EI: CONsortium for in vitro eye irritation testing strategy – EpiOcular™ time-to-toxicity (EpiOcular ET-50) protocols for hazard identification and labelling of eye irritating chemicals. Toxicol in Vitro 2018;49:34–52.
  • Alépée N, Leblanc V, Grandidier MH, et al. Development of the SkinEthic HCE Time-to-Toxicity test method for identifying liquid chemicals not requiring classification and labelling and liquids inducing serious eye damage and eye irritation. Toxicol In Vitro 2020;69:104960.
  • Cottrez F, Leblanc V, Groux H, et al. The EyeIRR-IS assay: development of an in vitro method using SkinEthic HCE model for liquid chemical eye irritation sub-categorization Protocol of the EYE IRR-IS assay for liquid products. Soc Toxicol 2019; 71:105072.
  • Groux H, Cottrez F, Alepee N, et al. Method for evaluating the eye irritation potential of chemicals. Immunosearch, assignee. United States patent US 2019 300 952A1; 2019.
  • Cottrez F, Leblanc V, Boitel E, et al. The EyeIRR-IS assay: development and evaluation of an in vitro assay to measure the eye irritation sub-categorization of liquid chemicals. Toxicol In Vitro 2021;71:105072.
  • Organisation for Economic Co-operation and Development. Test no. 494: Vitrigel-eye irritancy test method. Paris (France): OECD Publishing; 2019.
  • Srinivasan B, Kolli AR, Esch MB, et al. TEER measurement techniques for in vitro barrier model systems. J Lab Autom 2015;20:107–126.
  • Organisation for Economic Co-operation and Development. Test no. 437: Bovine corneal opacity and permeability test method. Paris (France): OECD Publishing; 2017.
  • Balls M, Botham PA, Bruner LH, et al. The EC/HO international validation study on alternatives to the draize eye irritation test. Toxicol Vitr 1995;9:871–929.
  • Gautheron P, Giroux J, Cottin M, et al. Interlaboratory assessment of the bovine corneal opacity and permeability (BCOP) assay. Toxicol Vitr 1994;8:381–392.
  • Southee J. Evaluation of the prevalidation process. Part 2, final report. Vol. 2. The bovine corneal opacity and permeability (BCOP) assay. Stirling (Scotland); 1998.
  • Interagency Coordinating Committee on the Validation of Alternative Methods. Current status of in vitro test methods for identifying ocular corrosives and severe irritants: Bovine corneal opacity and permeability test method. Research Triangle Park (NC): National Institute of Environmental Health Sciences; 2006.
  • Maurer JK, Parker RD, Jester JV. Extent of initial corneal injury as the mechanistic basis for ocular irritation: key findings and recommendations for the development of alternative assays. Regul Toxicol Pharmacol 2002;36:106–117.
  • Furukawa M, Sakakibara T, Itoh K, et al. Histopathological evaluation of the ocular-irritation potential of shampoos, make-up removers and cleansing foams in the bovine corneal opacity and permeability assay. J Toxicol Pathol 2015;28:243–248.
  • Organisation for Economic Co-operation and Development. Test no. 438: isolated chicken eye test method for identifying i) chemicals inducing serious eye damage and ii) chemicals not requiring classification for eye irritation or serious eye damage. Paris (France): OECD Publishing; 2018.
  • Interagency Coordinating Committee on the Validation of Alternative Methods. ICCVAM test method evaluation report: current validation status of in vitro test methods proposed for identifying eye injury hazard potential of chemicals and products. Research Triangle Park (NC): National Toxicology Program; 2010.
  • Roggeband R, York M, Pericoi M, et al. Eye irritation responses in rabbit and man after single applications of equal volumes of undiluted model liquid detergent products. Food Chem Toxicol 2000;38:727–734.
  • Cazelle E, Eskes C, Hermann M, et al. Suitability of histopathology as an additional endpoint to the isolated chicken eye test for classification of non-extreme pH detergent and cleaning products. Toxicol In Vitro 2014;28:657–666.
  • Burton ABG, York M, Lawrence RS. The in vitro assessment of severe eye irritants. Food Cosmet Toxicol 1981;19:471–480.
  • Earl L. The rabbit enucleated eye test. Invit Protoc 1994;85:33.
  • Cooper KJ, Earl LK, Harbell J, et al. Prediction of ocular irritancy of prototype shampoo formulations by the isolated rabbit eye (IRE) test and bovine corneal opacity and permeability (BCOP) assay. Toxicol In Vitro 2001;15:95–103.
  • Whittle E, Basketter D, York M, et al. Findings of an interlaboratory trial of the enucleated eye method as an alternative eye irritation test. Toxicol Mech Methods 1992;2:30–41.
  • York M, Wilson AP, Newsome CS. The classification of soluble silicates for eye hazard using the enucleated rabbit eye test. Toxicol In Vitro 1994;8:1265–1268.
  • Piehl M, Gilotti A, Donovan A, et al. Novel cultured porcine corneal irritancy assay with reversibility endpoint. Toxicol In Vitro 2010;24:231–239.
  • Piehl M, Carathers M, Soda R, et al. Porcine corneal ocular reversibility assay (PorCORA) predicts ocular damage and recovery for global regulatory agency hazard categories. Toxicol In Vitro 2011;25:1912–1918.
  • Spöler F, Kray O, Kray S, et al. The ex vivo eye irritation test as an alternative test method for serious eye damage/eye irritation. Altern Lab Anim 2015;43:163–179.
  • Organisation for Economic Co-operation and Development. Test no. 460: fluorescein leakage test method for identifying ocular corrosives and severe irritants. Paris (France): OECD Publishing; 2017.
  • ECVAM Scientific Advisory Committee. Peer review panel report on the retrospective validation of the cytotoxicity/cell-function based in vitro assays (eye irritation). Ispra (Italy): European Commission; 2009.
  • Organisation for Economic Co-operation and Development. Test no. 491: short time exposure in vitro test method. Paris (France): OECD Publishing; 2018.
  • Takahashi Y, Koike M, Honda H, et al. Development of the short time exposure (STE) test: an in vitro eye irritation test using SIRC cells. Toxicol in Vitro 2008;22:760–770.
  • Interagency Coordinating Committee on the Validation of Alternative Methods, National Toxicology Program (NTP) Interagency Center for the Evaluation of Alternative Toxicological Methods, National Institutes of Health, et al. Short time exposure (STE) test method summary review document. Research Triangle Park (NC): National Toxicology Program; 2013.
  • Reader SJ, Blackwell V, O’Hara R. A vital dye release method for assessing the short-term cytotoxic effects of chemicals and formulations. Altern Lab Anim 1989;28–33.
  • Reader SJ, Blackwell V, O’Hara R, et al. Neutral red release from pre-loaded cells as an in vitro approach to testing for eye irritancy potential. Toxicol In Vitro 1990;4:264–266.
  • Zuang V. The neutral red release assay: a review. Altern Lab Anim 2001;29:575–599.
  • Organisation for Economic Co-operation and Development. Draft OECD guidance for the testing of chemicals: the cytosensor microphysiometer test method: an in vitro method for identifying ocular corrosive and severe irritant chemicals as well as chemicals not classified as ocular irritants. Paris (France): OECD Publishing; 2012.
  • Organisation for Economic Co-operation and Development. Test no. 496: in vitro macromolecular test method for identifying chemicals inducing serious eye damage and chemicals not requiring classification for eye irritation or serious eye damage. Paris (France): OECD Publishing; 2019.
  • Eskes C, Hoffmann S, Facchini D, et al. Validation study on the Ocular Irritection assay for eye irritation testing. Toxicol In Vitro 2014;28:1046–1065.
  • ECVAM Science Advisory Committee. ESAC opinion on the Ocular Irritection® test method for prediction of serious eye damage/eye irritation potential of chemicals. Ispra (Italy): European Comission; 2016.
  • Organisation for Economic Co-operation and Development. Draft Performance Standards: In vitro macromolecular test method for ocular hazards [Internet]. Paris (France): OECD Publishing; 2018.
  • The OptiSafe Test Method [Internet]. Anaheim (CA). Lebrun Labs LLC. [cited 2020 Apr 21]. Available from: http://www.optimethod.com
  • Choksi N, Lebrun S, Nguyen M, et al. Validation of the OptiSafeTM eye irritation test. Cutan Ocul Toxicol 2020;39:180–192.
  • Institute for In Vitro Sciences Inc. Guidelines for histopathological evaluation of bovine corneas as an endpoint of the Bovine Corneal Opacity and Permeability (BCOP) assay. Gaithersburg (MD); 2016.
  • Leung DY, Lam DK, Yeung BY, et al. Comparison between central corneal thickness measurements by ultrasound pachymetry and optical coherence tomography. Clin Exp Ophthalmol 2006;34:751–754.
  • Heichel J, Wilhelm F, Kunert KS, et al. Topographic findings of the porcine cornea. Med Hypothesis Discov Innov Ophthalmol J 2016;5:125–131.
  • Li HF, Petroll WM, Møller-Pedersen T, et al. Epithelial and corneal thickness measurements by in vivo confocal microscopy through focusing (CMTF). Curr Eye Res 1997;16:214–221.
  • Tognon T, Bergeron S, Mastromonaco C, et al. The use of digital microscopy to compare the thicknesses of normal Corneas and ex vivo rejected corneal grafts with a focus on the Descemet’s Membrane. J Ophthalmol 2019;2019:1–10.
  • Wang X, Wu Q. Normal corneal thickness measurements in pigmented rabbits using spectral-domain anterior segment optical coherence tomography. Vet Ophthalmol 2013;16:130–134.
  • Fowler WC, Chang DH, Roberts BC, et al. A new paradigm for corneal wound healing research: the white leghorn chicken (Gallus gallus domesticus). Curr Eye Res 2004;28:241–250.
  • Gonçalves GC, Pérez-Merino P, Martínez-García MC, et al. Comparación de las características corneales en gallina y codorniz como modelos experimentales de cirugía refractiva. Arch Soc Esp Oftalmol 2016;91:310–315.
  • Czarnoleski M, Labecka AM, Dragosz-Kluska D, et al. Concerted evolution of body mass and cell size: similar patterns among species of birds (Galliformes) and mammals (Rodentia). Biol Open 2018;7:bio029603.
  • Wilson SE. Bowman’s layer in the cornea – structure and function and regeneration. Exp Eye Res 2020;195:108033.
  • Martin CL, Andersen BG. Ocular anatomy. In: Gelatt KN, ed. Veterinary ophthalmology. 1st ed. Philadelphia (PA): Lea & Febiger; 1981.
  • Mishima S. Clinical pharmacokinetics of the eye. Proctor lecture. Invest Ophthalmol Vis Sci 1981;21:504–541.
  • Mishima S, Gasset A, Klyce SJ, et al. Determination of tear volume and tear flow. Invest Ophthalmol Vis Sci 1966;5:264–276.
  • Gettings SD, Lordo RA, Hintze KL, et al. The CFTA evaluation of alternatives program: an evaluation of in vitro alternatives to the Draize primary eye irritation test. (Phase III) surfactant-based formulations. Food Chem Toxicol 1996;34:79–117.
  • US Consumer Product Safety Commission. Definitions. 16 CFR 1500.3. 2015.
  • Jester JV, Li L, Molai A, et al. Extent of initial corneal injury as a basis for alternative eye irritation tests. Toxicol In Vitro 2001;15:115–130.
  • Jester JV, Li HF, Petroll WM, et al. Area and depth of surfactant-induced corneal injury correlates with cell death. Invest Ophthalmol Vis Sci 1998;39:922–936.
  • Lebrun S, Xie Y, Chavez S, et al. An in vitro depth of injury prediction model for a histopathologic classification of EPA and GHS eye irritants. Toxicol In Vitro 2019;61:104628.
  • Xie Z, Ye K, Chen SH, et al. Cellular viability and death biomarkers enables the evaluation of ocular irritation using the bovine corneal opacity and permeability assay. Toxicol Lett 2021;340:52–57.
  • Kuckelkorn R, Schrage N, Keller G, et al. Emergency treatment of chemical and thermal eye burns. Acta Ophthalmol Scand 2002;80:4–10.
  • European Centre for Ecotoxicology and Toxicology of Chemicals. Derivation of assessment factors for human health risk assessment technical report no. 86. Brussels (Belgium): European Centre for Ecotoxicology and Toxicology of Chemicals; 2003.
  • Wilson MS, Wynn TA. Pulmonary fibrosis: pathogenesis, etiology and regulation. Mucosal Immunol 2009;2:103–121.
  • Ashby BD, Garrett Q, Willcox MD. Corneal injuries and wound healing – review of processes and therapies. Austin J Ophthalmol 2014;1:1017.
  • Hemmati H, Colby K. Treating acute chemical injuries of the cornea. Am Acad Ophthalmol [Internet]. 2012;9:CD009379. Available from: www.aao.org/eyenet/article/treating-acute-chemical-injuries-of-cornea
  • Pechura C, Rall D, editors. Institute of Medicine (US) Committee on the survey of the health effects of mustard gas and Lewisite. Washington (DC): National Academies Press (US); 1993.
  • Marrazzo G, Bellner L, Halilovic A, et al. The role of neutrophils in corneal wound healing in HO-2 null mice. Câmara NOS, editor. PLoS One 2011;6:e21180.
  • West-Mays JA, Dwivedi DJ. The keratocyte: corneal stromal cell with variable repair phenotypes. Int J Biochem Cell Biol 2006;38:1625–1631.
  • Freeberg F, Nixon G, Reer P, et al. Human and rabbit eye responses to chemical insult. Fundam Appl Toxicol 1986;7:626–634.
  • Freeberg F, Hooker D, Griffith J. Correlation of animal eye test data with human experience for household products: an update. J Toxicol Cutan Ocul Toxicol 1986;5:115–123.
  • Fox DA, Boyes WK. Toxic responses of the ocular and visual system. In: Klaassen CD, ed. Cassaret Doull’s Toxicol basic Sci poisons. 7th ed. Withby (ON): McGraw-Hill Ryerson; 2008:665–697.
  • Hackett RB, McDonald TO. Eye irritation. In: Marzulli FN, Maibach HI, eds. Advances in Modern Toxicology Dermatoxicology. 4th ed. Washington, DC: Hemisphere Publishing Corporation; 1991:749–815.
  • Scott L, Eskes C, Hoffmann S, et al. A proposed eye irritation testing strategy to reduce and replace in vivo studies using bottom-up and top-down approaches. Toxicol In Vitro 2010;24:1–9.
  • United Nations. Globally harmonized system of classification and labelling of chemicals (GHS). 6th ed. New York (NY); 2015.
  • Wheeler AR. Memorandum: directive to prioritize efforts to reduce animal testing [Internet]. 2019. Available from: https://www.epa.gov/newsreleases/administrator-wheeler-signs-memo-reduce-animal-testing-awards-425-million-advance
  • US Environmental Protection Agency. New approach methods work plan: reducing use of animals in chemical testing. 2020; Available from: https://www.epa.gov/sites/production/files/2020-06/documents/epa_nam_work_plan.pdf
  • Office of Pesticide Programs. Pesticide assessment guidelines: subdivision F: hazard evaluation: human and domestic animals (revised edition). Washington, DC: US Environmental Protection Agency; 1982.
  • Zorn-Kruppa M, Houdek P, Wladykowski E, et al. Determining the depth of injury in bioengineered tissue models of cornea and conjunctiva for the prediction of all three ocular GHS categories. PLoS One 2014;9:e114181.
  • Griffith M, Osborne R, Hunger R, et al. Functional human corneal equivalents constructed from cell lines. Science 1999;286:2169–2172.
  • Seo J, Byun WY, Alisafaei F, et al. Multiscale reverse engineering of the human ocular surface. Nat Med 2019; 25:1310–1318.
  • Pham LL, Watford SM, Pradeep P, et al. Variability in in vivo studies: defining the upper limit of performance for predictions of systemic effect levels. Comput Toxicol 2020;15:100126.
  • Casati S, Aschberger K, Barroso J, et al. Standardisation of defined approaches for skin sensitisation testing to support regulatory use and international adoption: position of the International Cooperation on Alternative Test Methods. Arch Toxicol 2018;92:611–617.
  • Dumont C, Barroso J, Matys I, et al. Analysis of the Local Lymph Node Assay (LLNA) variability for assessing the prediction of skin sensitisation potential and potency of chemicals with non-animal approaches. Toxicol In Vitro 2016;34:220–228.