1,237
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Allyl isothiocyanate attenuates LED light-induced retinal damage in rats: exploration for the potential molecular mechanisms

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , & ORCID Icon show all
Pages 376-386 | Received 02 Jun 2021, Accepted 01 Sep 2021, Published online: 27 Sep 2021

References

  • Benedetto MM, Contin MA. Oxidative stress in retinal degeneration promoted by constant LED light. Front Cell Neurosci 2019;13:139.
  • Zhao Z-C, Zhou Y, Tan G, Li J. Research progress about the effect and prevention of blue light on eyes. Int J Ophthalmol 2018;11:1999–2003.
  • Jaadane I, Villalpando Rodriguez GE, Boulenguez P, et al. Effects of white light-emitting diode (LED) exposure on retinal pigment epithelium in vivo . J Cell Mol Med 2017;21:3453–3466.
  • Kowluru RA, Chan P-S. Oxidative stress and diabetic retinopathy. Exp Diabetes Res 2007;2007:43603.
  • Slemmer JE, Weber JT. Assessing antioxidant capacity in brain tissue: methodologies and limitations in neuroprotective strategies. Antioxidants 2014;3:636–648.
  • Mitsiogianni M, Mantso T, Trafalis DT, et al. Allyl isothiocyanate regulates lysine acetylation and methylation marks in an experimental model of malignant melanoma. Eur J Nutr 2020;59:557–569.
  • Mazumder A, Dwivedi A, Du Plessis J. Sinigrin and its therapeutic benefits. Molecules 2016;21:416.
  • Zhang Y. Allyl isothiocyanate as a cancer chemopreventive phytochemical. Mol Nutr Food Res 2010;54:127–135.
  • Caglayan B, Kilic E, Dalay A, et al. Allyl isothiocyanate attenuates oxidative stress and inflammation by modulating Nrf2/HO-1 and NF-κB pathways in traumatic brain injury in mice. Mol Biol Rep 2019;46:241–250.
  • Sahin N, Orhan C, Erten F, et al. Effects of allyl isothiocyanate on insulin resistance, oxidative stress status, and transcription factors in high-fat diet/streptozotocin-induced type 2 diabetes mellitus in rats. J Biochem Mol Toxicol 2019;33:e22328.
  • Latronico T, Larocca M, Milella S, et al. Neuroprotective potential of isothiocyanates in an in vitro model of neuroinflammation. Inflammopharmacology 2020;29(2):561–571.
  • Chiang J-H, Tsai F-J, Hsu Y-M, et al. Sensitivity of allyl isothiocyanate to induce apoptosis via ER stress and the mitochondrial pathway upon ROS production in colorectal adenocarcinoma cells. Oncol Rep 2020;44:1415–1424.
  • Collier RJ, Wang Y, Smith SS, et al. Complement Deposition and Microglial Activation in the Outer Retina in Light-Induced Retinopathy: Inhibition by a 5-HT1A Agonist. Invest Ophthalmol Vis Sci 2011;52:8108–8116.
  • Shang Y-M, Wang G-S, Sliney DH, et al. Light-emitting-diode induced retinal damage and its wavelength dependency in vivo. Int J Ophthalmol 2017;10:191–202.
  • Kim MW, Kang J-H, Jung HJ, et al. Allyl isothiocyanate protects acetaminophen-induced liver injury via NRF2 activation by decreasing spontaneous degradation in hepatocyte. Nutrients 2020;12:3585.
  • Scientific Opinion on the safety of allyl isothiocyanate for the proposed uses as a food additive. Efsa J 2010;8:1943.
  • Bechtel D, Henderson L, Proudlock R. Lack of UDS activity in the livers of rats exposed to allylisothiocyanate. Teratog Carcinog Mutagen 1998;18:209–217.
  • Sahin K, Akdemir F, Orhan C, et al. (3R, 3'R)-zeaxanthin protects the retina from photo-oxidative damage via modulating the inflammation and visual health molecular markers. Cutan Ocul Toxicol 2019;38:161–168.
  • Janero DR. Malondialdehyde and thiobarbituric acid-reactivity as diagnostic indices of lipid peroxidation and peroxidative tissue injury. Free Radic Biol Med 1990;9:515–540.
  • Barim O, Karatepe M. The effects of pollution on the vitamins A, E, C, beta-carotene contents and oxidative stress of the freshwater crayfish, Astacus leptodactylus. Ecotoxicol Environ Saf 2010;73:138–142.
  • Karatepe M. Simultaneous determination of ascorbic acid and free malondialdehyde in human serum by HPLC-UV. LC-GC N Am 2004;22:362–365.
  • Vicente-Tejedor J, Marchena M, Ramírez L, et al. Removal of the blue component of light significantly decreases retinal damage after high intensity exposure. Plos One 2018;13:e0194218.
  • Sui G-Y, Liu G-C, Liu G-Y, et al. Is sunlight exposure a risk factor for age-related macular degeneration? A systematic review and meta-analysis. Br J Ophthalmol 2013;97:389–394.
  • Tao J-X, Zhou W-C, Zhu X-G. Mitochondria as potential targets and initiators of the blue light hazard to the retina. Oxid Med Cell Longev 2019;2019:6435364.
  • Arunkumar R, Calvo CM, Conrady CD, Bernstein PS. What do we know about the macular pigment in AMD: the past, the present, and the future. Eye (Lond) 2018;32:992–1004.
  • Loskutova E, Nolan J, Howard A, Beatty S. Macular pigment and its contribution to vision. Nutrients 2013;5:1962–1969.
  • Gu R, Tang W, Lei B, et al. Glucocorticoid-induced leucine zipper protects the retina from light-induced retinal degeneration by inducing Bcl-xL in rats. Invest Ophthalmol Vis Sci 2017;58:3656–3668.
  • Noell WK, Walker VS, Kang BS, Berman S. Retinal damage by light in rats. Invest Ophthalmol 1966;5:450–473.
  • Nita M, Grzybowski A. The role of the reactive oxygen species and oxidative stress in the pathomechanism of the age-related ocular diseases and other pathologies of the anterior and posterior eye segments in adults. Oxid Med Cell Longev 2016;2016:3164734.
  • He M, Long P, Guo L, et al. Fushiming capsule attenuates diabetic rat retina damage via antioxidation and anti-inflammation. evid-based. Evid Based Complement Alternat Med 2019;2019:5376439.
  • Baksheeva VE, Tiulina VV, Tikhomirova NK, et al. Suppression of light-induced oxidative stress in the retina by mitochondria-targeted antioxidant. Antioxidants 2019;8:3.
  • Zhang Y, Yang Y, Yu H, et al. Apigenin protects mouse retina against oxidative damage by regulating the NRF2 pathway and autophagy. Oxid Med Cell Longev 2020;2020:9420704.
  • Kim SH, Park J-W. Morin hydrate attenuates CSE-induced lipid accumulation, ER stress, and oxidative stress in RPE cells: implications for age-related macular degeneration. Free Radic Res 2019;53:865–874.
  • Zhang M, An C, Gao Y, et al. Emerging roles of Nrf2 and phase II antioxidant enzymes in neuroprotection. Prog Neurobiol 2013;100:30–47.
  • Gao X, Talalay P. Induction of phase 2 genes by sulforaphane protects retinal pigment epithelial cells against photooxidative damage. Proc Natl Acad Sci U S A 2004;101:10446–10451.
  • Dinkova-Kostova AT, Abramov AY. The emerging role of Nrf2 in mitochondrial function. Free Radic Biol Med 2015;88:179–188.
  • Wardyn JD, Ponsford AH, Sanderson CM. Dissecting molecular cross-talk between Nrf2 and NF-κB response pathways. Biochem Soc Trans 2015;43:621–626.
  • Sun M-H, Pang J-HS, Chen S-L, et al. Retinal protection from acute glaucoma-induced ischemia-reperfusion injury through pharmacologic induction of heme oxygenase-1. Invest Ophthalmol Vis Sci 2010;51:4798–4808.
  • Chalam KV, Khetpal V, Rusovici R, Balaiya S. A review: role of ultraviolet radiation in age-related macular degeneration. Eye Contact Lens 2011;37:225–232.
  • Subedi L, Venkatesan R, Kim SY. Neuroprotective and Anti-inflammatory activities of allyl isothiocyanate through attenuation of JNK/NF-κB/TNF-α signaling. Int J Mol Sci 2017;18:1423.
  • Mueller EE, Schaier E, Brunner SM, et al. Mitochondrial haplogroups and control region polymorphisms in age-related macular degeneration: a case-control study. PloS One 2012;7:e30874.
  • Erisgin Z, Ozer MA, Tosun M, et al. The effects of intravitreal H2 S application on apoptosis in the retina and cornea in experimental glaucoma model. Int J Exp Pathol 2019;100:330–336.
  • Cervia D, Catalani E, Casini G. Neuroprotective peptides in retinal disease. J Clin Med 2019;8:1146.
  • de Raad S, Szczesny PJ, Munz K, Remé CE. Light damage in the rat retina: glial fibrillary acidic protein accumulates in Müller cells in correlation with photoreceptor damage. Ophthalmic Res 1996;28:99–107.
  • Gupta CL, Nag TC, Jha KA, et al. Changes in the inner retinal cells after intense and constant light exposure in sprague-dawley rats. Photochem Photobiol 2020;96:1061–1073.
  • Iandiev I, Wurm A, Hollborn M, et al. Müller cell response to blue light injury of the rat retina. Invest Ophthalmol Vis Sci 2008;49:3559–3567.
  • Xia X, Teotia P, Patel H, et al. Chemical induction of neurogenic properties in mammalian Müller glia. Stem Cells Dayt Cells 2021;39(8):1081–1090.
  • B’chir W, Maurin A-C, Carraro V, et al. The eIF2α/ATF4 pathway is essential for stress-induced autophagy gene expression. Nucleic Acids Res 2013;41:7683–7699.
  • Wu J, Rutkowski DT, Dubois M, et al. ATF6alpha optimizes long-term endoplasmic reticulum function to protect cells from chronic stress. Dev Cell 2007;13:351–364.
  • Marie M, Bigot K, Angebault C, et al. Light action spectrum on oxidative stress and mitochondrial damage in A2E-loaded retinal pigment epithelium cells. Cell Death Dis 2018;9:287.
  • Kim I, Ryan AM, Rohan R, et al. Constitutive expression of VEGF, VEGFR-1, and VEGFR-2 in normal eyes. Invest Ophthalmol Vis Sci 1999;40:2115–2121.
  • Cachafeiro M, Bemelmans AP, Samardzija M, et al. Hyperactivation of retina by light in mice leads to photoreceptor cell death mediated by VEGF and retinal pigment epithelium permeability. Cell Death Dis 2013;4:e781.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.