158
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Development of a simplified human embryonic stem cell-based retinal pre-organoid model for toxicity evaluations of common pollutants

, , , , , , & show all
Pages 264-272 | Received 31 Jan 2023, Accepted 14 Aug 2023, Published online: 27 Aug 2023

References

  • Barbieri MV, Peris A, Postigo C, et al. Evaluation of the occurrence and fate of pesticides in a typical Mediterranean delta ecosystem (Ebro River Delta) and risk assessment for aquatic organisms. Environ Pollut. 2021;274:115813.
  • Cheng X, Zhang H, Wang Y, et al. Fate of the neonicotinoid insecticide cycloxaprid in different soils under oxic conditions. Sci Total Environ. 2022;821:153448. doi: 10.1016/j.scitotenv.2022.153448.
  • Itoh T, Hashimoto R. Fluorescence and nonradiative processes of dioxin vapors. Spectrochim Acta A Mol Biomol Spectrosc. 2014;122:158–163. doi: 10.1016/j.saa.2013.11.010.
  • Kočárek M, Artikov H, Voříšek K, et al. Pendimethalin degradation in soil and its interaction with soil microorganisms. Soil Water Res. 2016;11(4):213–219. doi: 10.17221/226/2015-SWR.
  • Li X, Li Y, Zhao L, et al. Efficient removal of butachlor and change in microbial community structure in single-chamber microbial fuel cells. Int J Environ Res Public Health. 2019;16(20):3987–3996.
  • Palma P, Fialho S, Lima A, et al. Occurrence and risk assessment of pesticides in a Mediterranean basin with strong agricultural pressure (Guadiana Basin: Southern of Portugal). Sci Total Environ. 2021;794:148703. doi: 10.1016/j.scitotenv.2021.148703.
  • Sui Y, Meng Z, Chen J, et al. Effects of dicyclohexyl phthalate exposure on PXR activation and lipid homeostasis in mice. Environ Health Perspect. 2021;129(12):127001. doi: 10.1289/EHP9262.
  • Sun Y, Zhu B, Ling S, et al. Decabromodiphenyl ethane mainly affected the muscle contraction and reproductive endocrine system in female adult zebrafish. Environ Sci Technol. 2022;56(1):470–479. doi: 10.1021/acs.est.1c06679.
  • Vorkamp K, Bossi R, Riget FF, et al. Novel brominated flame retardants and dechlorane plus in Greenland air and biota. Environ Pollut. 2015;196:284–291. doi: 10.1016/j.envpol.2014.10.007.
  • Wang W, Xiong P, Zhang H, et al. Analysis, occurrence, toxicity and environmental health risks of synthetic phenolic antioxidants: a review. Environ Res. 2021;201:111531. doi: 10.1016/j.envres.2021.111531.
  • Wijewardene L, Wu N, Hormann G, et al. Effects of the herbicides metazachlor and flufenacet on phytoplankton communities - A microcosm assay. Ecotoxicol Environ Saf. 2021;228:113036. doi: 10.1016/j.ecoenv.2021.113036.
  • Zhu J, Zhao Y, Li X, et al. Characteristics of two terbutylazine-degrading bacteria and the construction of a live bacterial agent for effective degradation of terbutylazine in soil. An Acad Bras Cienc. 2022;94(1):e20200658.
  • Li M, Yang T, Gao L, et al. An inadvertent issue of human retina exposure to endocrine disrupting chemicals: a safety assessment. Chemosphere. 2021;264(Pt 1):128484. doi: 10.1016/j.chemosphere.2020.128484.
  • Fox DA, Boyes WK. Toxic responses of the ocular and visual system. In: Casarett and Doull’s toxicology: the basic science of poisons; New York: McGraw-Hill, 2001. p. 565–595.
  • Araújo J, Garcia ML, Mallandrich M, et al. Release profile and transscleral permeation of triamcinolone acetonide loaded nanostructured lipid carriers (TA-NLC): in vitro and ex vivo studies. Nanomedicine. 2012;8(6):1034–1041. doi: 10.1016/j.nano.2011.10.015.
  • Roska B, Sahel JA. Restoring vision. Nature. 2018;557(7705):359–367. doi: 10.1038/s41586-018-0076-4.
  • Jin ZB, Gao ML, Deng WL, et al. Stemming retinal regeneration with pluripotent stem cells. Prog Retin Eye Res. 2019;69:38–56. doi: 10.1016/j.preteyeres.2018.11.003.
  • Jaga K, Dharmani C. Ocular toxicity from pesticide exposure: a recent review. Environ Health Prev Med. 2006;11(3):102–107. doi: 10.1265/ehpm.11.102.
  • Shi Q, Wang Z, Chen L, et al. Optical toxicity of triphenyl phosphate in zebrafish larvae. Aquat Toxicol. 2019;210:139–147. doi: 10.1016/j.aquatox.2019.02.024.
  • Xu T, Zhao J, Xu Z, et al. The developmental effects of pentachlorophenol on zebrafish embryos during segmentation: a systematic view. Sci Rep. 2016;6:25929. doi: 10.1038/srep25929.
  • Xu T, Zhao J, Yin D, et al. High-throughput RNA sequencing reveals the effects of 2,2’,4,4’ -tetrabromodiphenyl ether on retina and bone development of zebrafish larvae [article]. BMC Genomics. 2015;16(1):23. doi: 10.1186/s12864-014-1194-5.
  • Xu T, Chen L, Hu C, et al. Effects of acute exposure to polybrominated diphenyl ethers on retinoid signaling in zebrafish larvae. Environ Toxicol Pharmacol. 2013;35(1):13–20. doi: 10.1016/j.etap.2012.10.004.
  • Dong W, Macaulay LJ, Kwok KW, et al. The PBDE metabolite 6-OH-BDE 47 affects melanin pigmentation and THRβ MRNA expression in the eye of zebrafish embryos. Endocr Disruptors. 2014;2(1):e969072.
  • Chen L, Huang Y, Huang C, et al. Acute exposure to DE-71 causes alterations in visual behavior in zebrafish larvae. Environ Toxicol Chem. 2013;32(6):1370–1375. doi: 10.1002/etc.2168.
  • Chen ZF, Lin ZC, Lu SQ, et al. Azole-Induced color vision deficiency associated with thyroid hormone signaling: an integrated in vivo, in vitro, and in silico study. Environ Sci Technol. 2022;56(18):13264–13273. doi: 10.1021/acs.est.2c05328.
  • Livesey FJ, Cepko CL. Vertebrate neural cell-fate determination: lessons from the retina. Nat Rev Neurosci. 2001;2(2):109–118. doi: 10.1038/35053522.
  • Shin JY, Ma D, Lim M-S, et al. Embryonic stem cell derived photoreceptor precursor cells differentiated by coculture with RPE cells. J Mol Vision. 2021;27:288–299.
  • Strauss O. The retinal pigment epithelium in visual function. Physiol Rev. 2005;85(3):845–881. doi: 10.1152/physrev.00021.2004.
  • De Jong PTVM. Age-related macular degeneration. N Engl J Med. 2006;355(14):1474–1485. doi: 10.1056/NEJMra062326.
  • Faiola F, Yin N, Yao X, et al. The rise of stem cell toxicology. Environ Sci Technol. 2015;49(10):5847–5848. doi: 10.1021/acs.est.5b01549.
  • Liu S, Yin N, Faiola F. Prospects and frontiers of stem cell toxicology. Stem Cells Dev. 2017;26(21):1528–1539. doi: 10.1089/scd.2017.0150.
  • Liang S, Yin N, Faiola F. Human pluripotent stem cells as tools for predicting developmental neural toxicity of chemicals: strategies, applications, and challenges. Stem Cells Dev. 2019;28(12):755–768. doi: 10.1089/scd.2019.0007.
  • Lamba DA, Karl MO, Ware CB, et al. Efficient generation of retinal progenitor cells from human embryonic stem cells. Proc Natl Acad Sci USA. 2006;103(34):12769–12774. doi: 10.1073/pnas.0601990103.
  • Maruotti J, Wahlin K, Gorrell D, et al. A simple and scalable process for the differentiation of retinal pigment epithelium from human pluripotent stem cells. Stem Cells Transl Med. 2013;2(5):341–354. doi: 10.5966/sctm.2012-0106.
  • Nakano T, Ando S, Takata N, et al. Self-formation of optic cups and storable stratified neural retina from human ESCs. Cell Stem Cell. 2012;10(6):771–785. doi: 10.1016/j.stem.2012.05.009.
  • Meyer JS, Howden SE, Wallace KA, et al. Optic vesicle-like structures derived from human pluripotent stem cells facilitate a customized approach to retinal disease treatment. Stem Cells. 2011;29(8):1206–1218. doi: 10.1002/stem.674.
  • Cowan CS, Renner M, De Gennaro M, et al. Cell types of the human retina and its organoids at single-cell resolution. Cell. 2020;182(6):1623–1640 e34. doi: 10.1016/j.cell.2020.08.013.
  • Zhong XF, Gutierrez C, Xue T, et al. Generation of three-dimensional retinal tissue with functional photoreceptors from human iPSCs. Nat Commun. 2014;5:4047. Jundoi: 10.1038/ncomms5047.
  • Li M, Gong J, Ge L, et al. Development of human retinal organoid models for bisphenol toxicity assessment. Ecotoxicol Environ Saf. 2022;245:114094. doi: 10.1016/j.ecoenv.2022.114094.
  • Li M, Zeng Y, Ge L, et al. Evaluation of the influences of low dose polybrominated diphenyl ethers exposure on human early retinal development. Environ Int. 2022;163:107187–107199.
  • Zeng Y, Li M, Zou T, et al. The impact of particulate matter (PM2.5) on human retinal development in hESC-derived retinal organoids. Front Cell Dev Biol. 2021;9:607341. doi: 10.3389/fcell.2021.607341.
  • Bao J, Hou L, Wang Y, et al. Effect of affinity between dechlorane plus and human serum albumin on its serum concentration in a general population. Environ Sci Technol. 2022;56(4):2511–2518. doi: 10.1021/acs.est.1c07525.
  • Liao XL, Chen ZF, Zou T, et al. Chronic exposure to climbazole induces oxidative stress and sex hormone imbalance in the testes of male zebrafish. Chem Res Toxicol. 2021;34(12):2558–2566. doi: 10.1021/acs.chemrestox.1c00326.
  • Richter E, Wick A, Ternes TA, et al. Ecotoxicity of climbazole, a fungicide contained in antidandruff shampoo. Environ Toxicol Chem. 2013;32(12):2816–2825. doi: 10.1002/etc.2367.
  • Yin N, Liang S, Liang S, et al. TBBPA and its alternatives disturb the early stages of neural development by interfering with the NOTCH and WNT pathways. Environ Sci Technol. 2018;52(9):5459–5468. doi: 10.1021/acs.est.8b00414.
  • Kuwahara A, Ozone C, Nakano T, et al. Generation of a ciliary margin-like stem cell niche from self-organizing human retinal tissue. Nat Commun. 2015;6:6286. doi: 10.1038/ncomms7286.
  • Wahlin KJ, Maruotti JA, Sripathi SR, et al. Photoreceptor outer segment-like structures in Long-Term 3D retinas from human pluripotent stem cells. Sci Rep. 2017;7(1):766. doi: 10.1038/s41598-017-00774-9.
  • Saha A, Capowski E, Fernandez Zepeda MA, et al. Cone photoreceptors in human stem cell-derived retinal organoids demonstrate intrinsic light responses that mimic those of primate fovea. Cell Stem Cell. 2022;29(3):487–489. doi: 10.1016/j.stem.2022.02.003.
  • Mellough CB, Collin J, Khazim M, et al. IGF-1 signaling plays an important role in the formation of three-dimensional laminated neural retina and other ocular structures from human embryonic stem cells. Stem Cells. 2015;33(8):2416–2430. doi: 10.1002/stem.2023.
  • O’Hara-Wright M, Gonzalez-Cordero A. Retinal organoids: a window into human retinal development. Development. 2020;147(24). doi: 10.1242/dev.189746.
  • Park J, Cho CH, Parashurama N, et al. Microfabrication-based modulation of embryonic stem cell differentiation. Lab Chip. 2007;7(8):1018–1028. doi: 10.1039/b704739h.
  • Bauwens CL, Peerani R, Niebruegge S, et al. Control of human embryonic stem cell colony and aggregate size heterogeneity influences differentiation trajectories. Stem Cells. 2008;26(9):2300–2310. doi: 10.1634/stemcells.2008-0183.
  • Hazeltine LB, Badur MG, Lian X, et al. Temporal impact of substrate mechanics on differentiation of human embryonic stem cells to cardiomyocytes. Acta Biomater. 2014;10(2):604–612. doi: 10.1016/j.actbio.2013.10.033.
  • Adler R, Canto-Soler MV. Molecular mechanisms of optic vesicle development: complexities, ambiguities and controversies. Dev Biol. 2007;305(1):1–13. doi: 10.1016/j.ydbio.2007.01.045.
  • Zuber ME, Gestri G, Viczian AS, et al. Specification of the vertebrate eye by a network of eye field transcription factors. Development. 2003;130(21):5155–5167. doi: 10.1242/dev.00723.
  • Diacou R, Nandigrami P, Fiser A, et al. Cell fate decisions, transcription factors and signaling during early retinal development. Prog Retin Eye Res. 2022;91:101093. doi: 10.1016/j.preteyeres.2022.101093.
  • Oliveira C, Almeida J, Guilhermino L, et al. Acute effects of deltamethrin on swimming velocity and biomarkers of the common prawn Palaemon serratus. Aquat Toxicol. 2012;124–125:209–216. doi: 10.1016/j.aquatox.2012.08.010.
  • Li M, Liu X, Feng X. Cardiovascular toxicity and anxiety-like behavior induced by deltamethrin in zebrafish (Danio rerio) larvae. Chemosphere. 2019;219:155–164. doi: 10.1016/j.chemosphere.2018.12.011.
  • Kuder RS, Gundala HP. Developmental toxicity of deltamethrin and 3-phenoxybenzoic acid in embryo-larval stages of zebrafish (Danio rerio). Toxicol Mech Methods. 2018;28(6):415–422. doi: 10.1080/15376516.2018.1439131.
  • Huang H, Huang C, Wang L, et al. Toxicity, uptake kinetics and behavior assessment in zebrafish embryos following exposure to perfluorooctanesulphonicacid (PFOS). Aquat Toxicol. 2010;98(2):139–147. doi: 10.1016/j.aquatox.2010.02.003.
  • Mu X, Fu X, Sun H, et al. A gene network downstream of transcription factor Math5 regulates retinal progenitor cell competence and ganglion cell fate. Dev Biol. 2005;280(2):467–481. doi: 10.1016/j.ydbio.2005.01.028.
  • Yang Z, Ding K, Pan L, et al. Math5 determines the competence state of retinal ganglion cell progenitors. Dev Biol. 2003;264(1):240–254. doi: 10.1016/j.ydbio.2003.08.005.
  • Brzezinski JAt, Kim EJ, Johnson JE, et al. Ascl1 expression defines a subpopulation of lineage-restricted progenitors in the mammalian retina. Development. 2011;138(16):3519–3531. doi: 10.1242/dev.064006.
  • Hufnagel RB, Riesenberg AN, Quinn M, et al. Heterochronic misexpression of Ascl1 in the Atoh7 retinal cell lineage blocks cell cycle exit. Mol Cell Neurosci. 2013;54:108–120. doi: 10.1016/j.mcn.2013.02.004.
  • Borromeo MD, Meredith DM, Castro DS, et al. A transcription factor network specifying inhibitory versus excitatory neurons in the dorsal spinal cord. Development. 2014;141(14):2803–2812. doi: 10.1242/dev.105866.
  • Baumann L, Ros A, Rehberger K, et al. Thyroid disruption in zebrafish (Danio rerio) larvae: different molecular response patterns lead to impaired eye development and visual functions [article]. Aquat Toxicol. 2016;172:44–55. doi: 10.1016/j.aquatox.2015.12.015.
  • Shin S-H, Lee M-J, Lee Y-H, et al. The toxic effects of a pesticide carbaryl on the development of African clawed frog, Xenopus laevis. J Environ Sci. 2009;18(11):1247–1259.
  • Saillenfait AM, Gallissot F, Sabate JP. Differential developmental toxicities of di-n-hexyl phthalate and dicyclohexyl phthalate administered orally to rats. J Appl Toxicol. 2009;29(6):510–521. doi: 10.1002/jat.1436.
  • Powner MB, Salt TE, Hogg C, et al. Improving mitochondrial function protects bumblebees from neonicotinoid pesticides. PLoS One. 2016;11(11):e0166531. doi: 10.1371/journal.pone.0166531.
  • Paten AM, Colin T, Coppin CW, et al. Non-additive gene interactions underpin molecular and phenotypic responses in honey bee larvae exposed to imidacloprid and thymol. Sci Total Environ. 2022;814:152614. doi: 10.1016/j.scitotenv.2021.152614.
  • Li S, Li M, Wang Q, et al. Exposure to butachlor causes thyroid endocrine disruption and promotion of metamorphosis in Xenopus laevis. Chemosphere. 2016;152:158–165. doi: 10.1016/j.chemosphere.2016.02.098.
  • Budai P, Lehel J, Tavaszi J, et al. HET-CAM test for determining the possible eye irritancy of pesticides. Acta Vet Hung. 2010;58(3):369–377. doi: 10.1556/AVet.58.2010.3.9.
  • Huang L, Wang C, Zhang Y, et al. Phenanthrene causes ocular developmental toxicity in zebrafish embryos and the possible mechanisms involved. J Hazard Mater. 2013;261:172–180. doi: 10.1016/j.jhazmat.2013.07.030.
  • Xu EG, Mager EM, Grosell M, et al. Time- and oil-dependent transcriptomic and physiological responses to deepwater horizon oil in Mahi-Mahi (Coryphaena hippurus) embryos and larvae. Environ Sci Technol. 2016;50(14):7842–7851. doi: 10.1021/acs.est.6b02205.
  • Felemban M, Dorgau B, Hunt NC, et al. Extracellular matrix component expression in human pluripotent stem cell-derived retinal organoids recapitulates retinogenesis in vivo and reveals an important role for IMPG1 and CD44 in the development of photoreceptors and interphotoreceptor matrix. Acta Biomater. 2018;74:207–221. doi: 10.1016/j.actbio.2018.05.023.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.