77
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Toxicity of superparamagnetic iron oxide nanoparticles on retinoblastoma mitochondria

, , &
Pages 69-74 | Received 12 Sep 2023, Accepted 20 Oct 2023, Published online: 31 Oct 2023

References

  • Sheng L, Wu J, Gong X, et al. SP1-induced upregulation of lncRNA PANDAR predicts adverse phenotypes in retinoblastoma and regulates cell growth and apoptosis in vitro and in vivo. Gene. 2018;668:140–145. doi:10.1016/j.gene.2018.05.065.
  • Wang X, Zhang X, Han Y, et al. Silence of lncRNA ANRIL represses cell growth and promotes apoptosis in retinoblastoma cells through regulating miR-99a and c-Myc. Artif Cells Nanomed Biotechnol. 2019;47(1):2265–2273. doi:10.1080/21691401.2019.1623229.
  • Zhi D, Yang T, Yang J, et al. Targeting strategies for superparamagnetic iron oxide nanoparticles in cancer therapy. Acta Biomater. 2020;102:13–34. doi:10.1016/j.actbio.2019.11.027.
  • Liu H, Zhou M. Antitumor effect of quercetin on Y79 retinoblastoma cells via activation of JNK and p38 MAPK pathways. BMC Complement Altern Med. 2017;17(1):531. doi:10.1186/s12906-017-2023-6.
  • Xing L, Zhang L, Feng Y, et al. Downregulation of circular RNA hsa_circ_0001649 indicates poor prognosis for retinoblastoma and regulates cell proliferation and apoptosis via AKT/mTOR signaling pathway. Biomed Pharmacother. 2018;105:326–333. doi:10.1016/j.biopha.2018.05.141.
  • Yang Y, Wu N, Wu Y, et al. Artesunate induces mitochondria-mediated apoptosis of human retinoblastoma cells by upregulating kruppel-like factor 6. Cell Death Dis. 2019;10(11):862. doi:10.1038/s41419-019-2084-1.
  • Talluri S, Malla RR. Superparamagnetic iron oxide nanoparticles (SPIONs) for diagnosis and treatment of breast, ovarian and cervical cancers. Curr Drug Metab. 2019;20(12):942–945. doi:10.2174/1389200220666191016124958.
  • Ansari MO, Ahmad MF, Shadab G, et al. Superparamagnetic iron oxide nanoparticles based cancer theranostics: a double edge sword to fight against cancer. J Drug Delivery Sci Technol. 2018;45:177–183. doi:10.1016/j.jddst.2018.03.017.
  • Maity D, Kandasamy G, Sudame A. Superparamagnetic iron oxide nanoparticles for cancer theranostic applications. In: Rai M, Jamil B, editors. Nanotheranostics: Applications and limitations. Basel, Switzerland: Springer; 2019. p. 245–276.
  • Musielak M, Piotrowski I, Suchorska WM. Superparamagnetic iron oxide nanoparticles (SPIONs) as a multifunctional tool in various cancer therapies. Rep Pract Oncol Radiother. 2019;24(4):307–314. doi:10.1016/j.rpor.2019.04.002.
  • Ke F, Yu J, Chen W, et al. The anti-malarial atovaquone selectively increases chemosensitivity in retinoblastoma via mitochondrial dysfunction-dependent oxidative damage and akt/AMPK/mTOR inhibition. Biochem Biophys Res Commun. 2018;504(2):374–379. doi:10.1016/j.bbrc.2018.06.049.
  • Singh L, Nag TC, Kashyap S. Ultrastructural changes of mitochondria in human retinoblastoma: correlation with tumor differentiation and invasiveness. Tumour Biol. 2016;37(5):5797–5803. doi:10.1007/s13277-015-4120-9.
  • Burke PJ. Mitochondria, bioenergetics and apoptosis in cancer. Trends Cancer. 2017;3(12):857–870. doi:10.1016/j.trecan.2017.10.006.
  • Mani S, Swargiary G, Tyagi S, et al. Nanotherapeutic approaches to target mitochondria in cancer. Life Sci. 2021;281:119773. doi:10.1016/j.lfs.2021.119773.
  • Yaqoob MD, Xu L, Li C, et al. Targeting mitochondria for cancer photodynamic therapy. Photodiagnosis Photodyn Ther. 2022;38:102830. doi:10.1016/j.pdpdt.2022.102830.
  • Tahmasebi G, Eslami E, Naserzadeh P, et al. Role of mitochondria and lysosomes in the selective cytotoxicity of cold atmospheric plasma on retinoblastoma cells. Iran J Pharm Res. 2020;19(4):203–215.
  • Li Y, Sun W, Han N, et al. Curcumin inhibits proliferation, migration, invasion and promotes apoptosis of retinoblastoma cell lines through modulation of miR-99a and JAK/STAT pathway. BMC Cancer. 2018;18(1):1230. doi:10.1186/s12885-018-5130-y.
  • Seydi E, Rasekh HR, Salimi A, et al. Myricetin selectively induces apoptosis on cancerous hepatocytes by directly targeting their mitochondria. Basic Clin Pharmacol Toxicol. 2016;119(3):249–258. doi:10.1111/bcpt.12572.
  • Sareen D, van Ginkel PR, Takach JC, et al. Mitochondria as the primary target of resveratrol-induced apoptosis in human retinoblastoma cells. Invest Ophthalmol Vis Sci. 2006;47(9):3708–3716. doi:10.1167/iovs.06-0119.
  • Zhao Y, Ye L, Liu H, et al. Vanadium compounds induced mitochondria permeability transition pore (PTP) opening related to oxidative stress. J Inorg Biochem. 2010;104(4):371–378. doi:10.1016/j.jinorgbio.2009.11.007.
  • Salimi A, Roudkenar MH, Sadeghi L, et al. Selective anticancer activity of acacetin against chronic lymphocytic leukemia using both in vivo and in vitro methods: key role of oxidative stress and cancerous mitochondria. Nutr Cancer. 2016;68(8):1404–1416. doi:10.1080/01635581.2016.1235717.
  • Baracca A, Sgarbi G, Solaini G, et al. Rhodamine 123 as a probe of mitochondrial membrane potential: evaluation of proton flux through F(0) during ATP synthesis. Biochim Biophys Acta. 2003;1606(1–3):137–146. doi:10.1016/s0005-2728(03)00110-5.
  • Salimi A, Nikoosiar Jahromi M, Pourahmad J. Maternal exposure causes mitochondrial dysfunction in brain, liver, and heart of mouse fetus: an explanation for perfluorooctanoic acid induced abortion and developmental toxicity. Environ Toxicol. 2019;34(7):878–885. doi:10.1002/tox.22760.
  • Afrasiabi M, Seydi E, Rahimi S, et al. The selective toxicity of superparamagnetic iron oxide nanoparticles (SPIONs) on oral squamous cell carcinoma (OSCC) by targeting their mitochondria. J Biochem Mol Toxicol. 2021;35(6):1–8. doi:10.1002/jbt.22769.
  • Jahanbani J, Ghotbi M, Shahsavari F, et al. Selective anticancer activity of superparamagnetic iron oxide nanoparticles (SPIONs) against oral tongue cancer using in vitro methods: the key role of oxidative stress on cancerous mitochondria. J Biochem Mol Toxicol. 2020;34(10):e22557.
  • Mileo AM, Miccadei S. Polyphenols as modulator of oxidative stress in cancer disease: New therapeutic strategies. Oxid Med Cell Longev. 2016;2016:6475624–17. doi:10.1155/2016/6475624.
  • NavaneethaKrishnan S, Rosales JL, Lee KY. ROS-Mediated cancer cell killing through dietary phytochemicals. Oxid Med Cell Longev. 2019;2019:9051542–16. doi:10.1155/2019/9051542.
  • Perillo B, Di Donato M, Pezone A, et al. ROS in cancer therapy: the bright side of the moon. Exp Mol Med. 2020;52(2):192–203. doi:10.1038/s12276-020-0384-2.
  • Brenneisen P, Reichert AS. Nanotherapy and reactive oxygen species (ROS) in cancer: a novel perspective. Antioxidants (Basel). 2018;7(2):31. doi:10.3390/antiox7020031.
  • Ciccarese F, Raimondi V, Sharova E, et al. Nanoparticles as tools to target redox homeostasis in cancer cells. Antioxidants (Basel). 2020;9(3):211. doi:10.3390/antiox9030211.
  • Mao BH, Chen ZY, Wang YJ, et al. Silver nanoparticles have lethal and sublethal adverse effects on development and longevity by inducing ROS-mediated stress responses. Sci Rep. 2018;8(1):2445. doi:10.1038/s41598-018-20728-z.
  • Barkhade T, Mahapatra SK, Banerjee I. Study of mitochondrial swelling, membrane fluidity and ROS production induced by nano-TiO(2) and prevented by Fe incorporation. Toxicol Res (Camb)). 2019;8(5):711–722. doi:10.1039/c9tx00143c.
  • Rottenberg H, Hoek JB. The path from mitochondrial ROS to aging runs through the mitochondrial permeability transition pore. Aging Cell. 2017;16(5):943–955. doi:10.1111/acel.12650.
  • Oyebode OT, Adebiyi OR, Olorunsogo OO. Toxicity of some broad-spectrum antibacterials in normal rat liver: the role of mitochondrial membrane permeability transition pore. Toxicol Mech Methods. 2019;29(2):128–137. doi:10.1080/15376516.2018.1528651.
  • Takeyama N, Miki S, Hirakawa A, et al. Role of the mitochondrial permeability transition and cytochrome C release in hydrogen peroxide-induced apoptosis. Exp Cell Res. 2002;274(1):16–24. doi:10.1006/excr.2001.5447.
  • Nicotera P, Leist M, Ferrando-May E. Intracellular ATP, a switch in the decision between apoptosis and necrosis. Toxicol Lett. 1998;102-103:139–142. doi:10.1016/s0378-4274(98)00298-7.
  • Winitchaikul T, Sawong S, Surangkul D, et al. Calotropis gigantea stem bark extract induced apoptosis related to ROS and ATP production in Colon cancer cells. Plos One. 2021;16(8):e0254392. doi:10.1371/journal.pone.0254392.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.