100
Views
7
CrossRef citations to date
0
Altmetric
Review Article

Aflatoxin control through transgenic approaches

, &
Pages 89-101 | Published online: 14 Jul 2009

References

  • Archer, B. L. (1960). The proteins of Hevea brasiliensis latex: isolation and characterization of crystalline hevein. Biochem. J. 75: 236–240.
  • Bhatnagar, D., Rajasekaran, K., Brown, R. L., Cary, J. W., Yu, J., and Cleveland, T. E. Genetic and biochemical control of aflatoxigenic fungi. (2007). In: Wilson, C. L., ed. Microbial Food Contamination. Boca Raton, FL: CRC Press, pp. 395–426.
  • Bhatnagar, D., Rajasekaran, K., Cary, J. W., Brown, R. L., Yu, J., and Cleveland, T. E. (2008). Molecular approaches to development of resistance to preharvest aflatoxin contamination. In: Leslie, J. F., Bandyopadhyay, R., Visconti, A., eds. Mycotoxins: Detection Methods, Management, Public Health, and Agricultural Trade. Wallingford, UK: CABI Publishing, pp. 257–276.
  • Bock, C. H., and Cotty, P. J. (1999). Wheat seed colonized with atoxigenic Aspergillus flavus: characterization and production of a biopesticide for aflatoxin control. Biocontrol Sci. Techn. 9: 529–543.
  • Boston, R. S., Bass, H. W., and O’Brian, G. R. (1994). DNA encoding ribosome inactivating protein. U.S. Patent 5,332,808.
  • Boston, R. S., Bass, H. W., and O’Brian, G. R. (1996). DNA encoding ribosome inactivating protein. U.S. Patent 5,552,140.
  • Bowman, H. G., and Hultmark, D. (1987). Cell-free immunity in insects. Ann. Rev. Microbiol. 31: 103–126.
  • Brederode, F. T., Linthorst, H. J. M., and Bol, J. F. (1991). Differential induction of acquired resistance and PR gene expression in tobacco by virus infection, ethephon treatment, UV light and wounding. Plant Mol. Biol. 17: 1117–1125.
  • Broekaert, W. F., Cammue, B. P. A., Debolle, M. F. C., Thevissen, K., Desamblanx, G. W., and Osborn, R. W. (1997). Antimicrobial Peptides from Plants. Crit Rev Plant Sci 16: 297–323.
  • Broekaert, W. F., Lee, H.-I., Kush, A., Chua, N.-H., and Raikhel, N. (1990). Wound-induced accumulation of mRNA containing a hevein sequence in lacticifers of rubber tree (Hevea brasiliensis). Proc. Natl. Acad. Sci. U S A 87: 7633–7637.
  • Broekaert, W. F., Van Parijs, J., Leyns, F., Joos, H., and Peumans, W. J. (1989). A chitin-binding lectin from stinging nettle ribosomes with antifungal properties. Science 245: 1100–1102.
  • Bruix, M., Gonzales, C., Santora, J., Soriano, F., Rocher, A., Mendez, E., and Rico, M. (1993). 1H-NMR studies on the structure of a new thionin from barley endosperm. Biopolymers 36: 751–763.
  • Bruix, M., Gonzales, C., Santoro, J., Soriano, F., Rocher, A., Mendez, E., and Rico, M. H. (1995). NMR studies on the structure of a new thionin from barley endosperm. Biopolymers 36: 751–763.
  • Bruix, M., Jimenez, M., Santoro, J., Gonzales, C., Colilla, F. J., Mendez, E., and Rico, M. (1993). Solution structure of 1-H and 1-P thionins from barley and wheat endosperm determined by 1H-NMR: a structural motif common to toxic arthropod proteins. Biochem. J. 132: 715–724.
  • Burow, G. B., Nesbitt, T. C., Dunlap, J., and Keller, N. P. (1997). Seed lipoxygenase products modulate Aspergillus mycotoxin biosynthesis. Mol. Plant Microbe Interact. 10: 380–387.
  • Cammue, B., De Bolle, M., Terras, F., Proost, P., Van Damme, J., Rees, S., Verleyden, J., and Broekaert, W. (1992). Isolation and characterization of a novel class of plant antimicrobial peptides from Mirabilis jalapa L. seeds. J. Biol. Chem. 267: 2228–2233.
  • Cary, J. W., Rajasekaran, K., Jaynes, J. M., and Cleveland, T. E. (2000). Transgenic expression of a gene encoding a synthetic antimicrobial peptide results in inhibition of fungal growth in vitro and in plants. Plant Science. 153: 171–180.
  • Chakrabarti, A., Ganapathi, T. R., Mukherjee, P. K., and Bapat, V. A. (2003). MSI-99, a magainin analogue, imparts enhanced disease resistance in transgenic tobacco and banana. Planta 216: 587–596.
  • Chen, Z-Y., Brown, R. L., Damann, K. E., and Cleveland, T. E. (2004). Identification of a maize kernel stress-related protein and its effect on aflatoxin accumulation. Phytopathol. 94: 938–945.
  • Chen, Z-Y., Brown, R. L., Rajasekaran, K., Damann, K. E., and Cleveland, T. E. (2006). Identification of a maize kernel pathogenesis-related protein and evidence for its involvement in resistance to Aspergillus flavus infection and aflatoxin production. Phytopathol. 96: 87–95.
  • Chen, Z-Y., Brown, R. L., Russin, J. S., Lax, A. R., and Cleveland, T. E. (1998). Resistance to Aspergillus flavus in corn kernels is associated with a 14-kDa protein. Phytopathol. 88: 276–281.
  • Chiche, L., Heitz, A., Gelly, J. C., Gracy, J., Chau, P. T., Ha, P. T., Hernandez, J. F., and Le-Nguyen, D. (2004). Squash inhibitors: from structural motifs to macrocyclic knottins. Curr. Protein Pept. Sci. 5: 341–349.
  • Christensen, A. B., Cho, B. H., Næsby, M., Gregersen, P. L., Brandt, J., Madriz-Ordezana, K., Collinge, D. B., and Thordal-Christensen, H. (2002). The molecular characterization of two barley proteins establishes the novel PR-17 family of pathogenesis-related proteins. Mol. Plant Pathol. 3: 135–144.
  • Christou, P. (1996). Particle Bombardment for Genetic Engineering of Plants. San Diego, CA: Academic Press.
  • Council for Agricultural and Science Technology. (2003). Aflatoxins and Other Mycotoxins: An Agricultural Perspective. Ames, IA: Council for Agricultural and Science Technology Reports.
  • Curtis, I. S., ed. (2004). Transgenic Crops of the World—Essential Protocols. Dordrecht, The Netherlands: Kluwer Academic Publishers.
  • Da Silva, P., Landon, C., Industri, B., Marias, A., Marion, D., Ponchet, M., and Vovelle, F. (2005). Solution structure of a tobacco lipid transfer protein exhibiting new biophysical and biological features. Proteins 59: 356–367.
  • Dandekar, A., and McGranahan, G. (2004). Genetic engineering and breeding of walnuts for control of aflatoxin. Proceedings of the USDA-ARS Aflatoxin Elimination Workshop.
  • Daniell, H. (2007). Transgene containment by maternal inheritance: effective or elusive? Proc Natl Acad Sci U S A 104(17): 6879–6880.
  • DeGray, G., Rajasekaran, K., Smith, F., Sanford, J., and Daniell, H. (2001). Expression of an antimicrobial peptide via the chloroplast genome to control phytopathogenic bacteria and fungi. Plant Physiol. 127: 852–862.
  • De Lucca, A. J., Jacks, T., and Broekaert, W. (1999). Fungicidal and binding properties of three plant peptides. Mycopathol. 40: 87–91.
  • Emani, C., Garcia, J. M., Lopata-Finch, E., Pozo, M. J., Uribe, P., Kim, D. J., Sunilkumar, G., Cook, D. R., Kenerley, C. M., and Rathore, K. S. (2003). Enhanced fungal resistance in transgenic cotton expressing an endochitinase gene from Trichoderma virens. Plant Biotechnol J. 1: 321–336.
  • Endo, Y., and Tsurugi, K. (1998). The RNA N-glycosidase activity of ricin A-chain. The characteristics of the enzymatic activity ricin A-chain with ribosomes and with rRNA. J. Biol. Chem. 263: 8735–8739.
  • Fakhoury, A. M., and Woloshuk, C. P. (2001). Inhibition of growth of Aspergillus flavus and fungal α-amylases by a lectin-like protein from Lablab purpureus. Mol Plant-Microbe Interact 14: 955–961.
  • Fant, F., Vranken, W., Broekaert, W., and Borremans, F. (1998). Determination of the three-dimensional solution structure of Raphanus sativus antifungal protein by 1H NMR. J. Biol. Chem. 267: 15301–15309.
  • Fant, F., Vranken, W., Martins, J., and Borremans, F. (1997). Solution conformation of Raphanus sativus antifungal protein 1 (Rs-AFP1) by 1H NMR. Resonance assignment, secondary structure and global fold. Bulletin Des Soc. Chim. Belg. 106: 51–57.
  • Florack, D. E. A., and Stiekema, W. J. (1994). Thionins: properties, possible roles and mechanisms of action. Plant Mol. Biol. 26: 25–27.
  • Gao, G.-H., Liu, W., Dai, J.-X., Wang, J. F., Hu, Z., Zhang, Y., and Wang, D.C. (2001). Solution structure of PAFP-S: a new knottin-type antifungal peptide from the seeds of Phytolacca americana. Biochem. 40: 10973–10978.
  • Garbarino, J. E., and Belknap, W. R. (1994). Isolation of a ubiquitin-ribosomal protein gene (ubi3) from potato and expression of its promoter in transgenic plants. Plant Mol. Biol. 24(1): 119–127.
  • Ge, X., Chen, J., Sun, C., and Cao, K. (2003). Preliminary study on the structural basis of the antifungal activity of a rice lipid transfer protein. Protein Eng. 16: 387–390.
  • Ge, X. C., Chen, J. C., Lin, Y., Sun, C. R., and Cao, K. M. (2002). Expression, purification and function of rice nonspecific lipid transfer proteins. Sheng Wu Hua Xue Sheng Wu Wu Li Xue Bao (Shanghai) 34: 83–87.
  • Gomar, E., Sagot, E., Gaillard, C., Laquitaine, L., Poinssot, B., Sanejouand, Y. H., Delrot, S., and Coutos-Thevenot, P. (1996). Solution structure and lipid binding of a nonspecific lipid transfer protein extracted from maize seeds. Protein Sci. 5: 565–577.
  • Gracy, J., Le-Nguyen, D., Gelly, J. C., Kaas, Q., Heitz, A., and Chiche, L. (2008). KNOTTIN: the knottin or inhibitor cysteine knot scaffold in 2007. Nucleic Acids Res. 36: D314–D319.
  • Gradziel, T., Dandekar, A., Ashamed, M., Driver, N. J., and Tang, A. (1995). Integrating fungal pathogen and insect vector resistance for comprehensive preharvest aflatoxin control in almond. Proceedings of the USDA-ARS Aflatoxin Elimination Workshop, Atlanta, GA. p. 5.
  • Guo, B.Z., Chen, Z.-Y., Brown, R. L., Lax, A. R., Cleveland, T. E., Russin, J. S., Mehta, A. D., Selitrenikoff, C. P., and Widstrom, N. W. (1997). Germination induces accumulation of specific proteins and antifungal activities in corn kernels. Phytopathol. 87(11): 1174–1178.
  • Gurr, S. J., and Rushton, P. J. (2005). Engineering plants with increased disease resistance: how are we going to express it? Trends Biotechnol 23(6): 283–290.
  • Hancock, R. E. W., and Chapple, D. S. (1999). Peptide Antibiotics, Antimicrob Agents Chemother 43: 1317–1323.
  • Henneberry, T. J., Bariola, I. A., and Russell, T. E. (1978). Pink bollworm: chemical control in Arizona and relationship to infestations, seed damage, and aflatoxin contamination. J Econ Entomol 71: 440–448.
  • Jacks, T. J., Cotty, P. J., and Hinojosa, O. (1991). Potential of animal myeloperoxidase to protect plants from pathogens. Biochem. Biophys. Res. Commun. 178: 1202–1204.
  • Jacks, T. J., Cary, J. W., Rajasekaran, K., Cleveland, T. E., and van Pée, K.-H. (2004). Transformation of plants with a chloroperoxidase gene to enhance disease resistance. U.S. Patent 6,703,540.
  • Jacks, T. J., De Lucca, A. J., and Morris, N. M. (1999). Effects of chloroperoxidase and hydrogen peroxide on the viabilities of Aspergillus flavus conidiospores. Molec Cell Biochem. 195: 169–172.
  • Jacks, T. J., and Hinojosa, O. (1993). Superoxide radicals in intact tissues and in dimethyl sulfoxide-based extracts. Phytochemistry. 33: 563–568.
  • Kader, J. C. (1996). Lipid-transfer proteins in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47: 627–654.
  • Keller, N. P., Calvo, A., and Gardner, H. (1999). Linoleic acid and linoleic acid derivatives regulate Aspergillus development and mycotoxin production. Proceedings of the USDA-ARS 1999 Aflatoxin Elimination Workshop, p.43.
  • Kombrick, E., Schroeder, M., and Hahnbrock, K. (1988). Several “pathogenesis-related” proteins in potato are 1,3-β-glucanases and chitinases. Proc. Natl. Acad. Sci. U S A 85: 782–786.
  • Lay, F. T., Brugliera, F., and Anderson, M. A. (2003). Isolation and properties of floral defensins from ornamental tobacco and petunia. Plant. Physiol. 131: 1283–1293.
  • Lehrer, R. I., Barton, A., Daher, K. A., Harwig, S. L., Ganz, T., and Selsted, M. E. (1989). Interaction of human defensins with Escherichia coli. Mechanism of activity. J. Clin. Invest. 84: 553–561.
  • Lehrer, R. I., Szklarek, D., Ganz, T., and Selsted, M. E. (1985). Correlation of binding of rabbit granulocyte peptides to Candida albicans with candidacial activity. Infect. Immun. 49: 207–211.
  • Letourneau, D. K., and Burrows, B. E. (2002). Genetically Engineered Organisms—Assessing Environmental and Human Health Effects. Boca Raton, FL: CRC Press.
  • Li, Q. S., Lawrence, C. B., Xing, H. Y., Babbitt, R. A., Bass, W. T., Maiti, I. B., and Everett, N. P. (2001). Enhanced disease resistance conferred by expression of an antimicrobial magainin analog in transgenic tobacco. Planta 212: 635–639.
  • Lin, K. F., Liu, Y. N., Hsu, S. T., Samuel, D., Cheng, C. S., Bonvin, A. M., and Lyu, P. C. (2005). Characterization and structural analyses of nonspecific lipid transfer protein 1 from mung bean. Biochemistry 44: 5703–5712.
  • Linthorst, H. J. M. (1991). Pathogen-related proteins of plants. Crit. Rev. Plant. Sci. 10: 123–150.
  • Liu, W., Yang, N., Ding, J., Huang, R.-h., Hu, Z., and Wang, D.-C. (2005). Structural mechanism governing the quaternary organization of monocot mannose-binding lectin revealed by the novel monomeric structure of an orchid lectin. J. Biol. Chem. 280: 14865–14876.
  • Lozovaya, V. V., Waranyuwat, A., and Widholm, J. M. (1998). β-1,3-glucanse and resistance to Aspergillus flavus infection in maize. Crop Sci. 38: 1255–1260.
  • Lutz, K. A., Azhagiri, A. K., Tungsuchat-Huang, T., and Maliga, P. (2007). A guide to choosing vectors for transformation of the plastid genome of higher plants. Plant Physiol. 145: 1201–1210.
  • Lynch, R. E., and Wilson, D. M. (1991). Enhanced infection of peanut, Arachis hypogaea L. seeds with Aspergillus flavus group fungi due to external scarification of peanut pods by the lesser cornstalk borer, Elasmopalpus lignosellus, Zeller. Peanut Sci. 18: 110.
  • Mahoney, N., and Molyneux, R. J. (2004). Phytochemical Inhibi tion of aflatoxigenicity in Aspergillus flavus by constituents of walnut, Juglans regia. J. Agric. Food Chem. 52(7): 1882–1889.
  • Maliga, P. (2004). Plastid transformation in higher plants. Annu. Rev. Plant Biol. 55: 289–313.
  • Mauch, F., Mauch-Mani, B., and Boller, T. (1988). Antifungal hydrolases in pea tissue. II. Inhibition of fungal growth by combinations of chitinase and β-1,3-glucanases. Plant Physiol. 88: 936–942.
  • McHughen, A. (2000). Pandora’s Picnic Basket: The Potential and Hazards of Genetically Modified Foods. New York: Oxford University Press.
  • Mehta, A. D., and Boston, R. S. (1998). Ribosome-inactivating proteins. In: Bailey-Serres, J., Gallie, D. R., eds. A Look Beyond Transcription: Mechanisms Determining mRNA Stability and Translation in Plants. Rockville, MD: American Society of Plant Physiology, pp. 145–152.
  • Mendum, M., McGranahan, G., Dandekar, A., and Uratsu, S. (1995). Progress in engineering walnuts for resistance to Aspergillus flavus. Proceedings of the USDA-ARS Aflatoxin Elimination Workshop, Atlanta, Georgia.
  • Michelmore, R. W. (2003). The impact zone: genomics and breeding for durable disease resistance. Curr. Opin. Plant Biol. 6(4): 397–404.
  • Murray, F., Llewellyn, D., McFadden, H., Last, D., Dennis, E. S., and Peacock, W. J (1999). Expression of the Talaromyces flavus glucose oxidase gene in cotton and tobacco reduces fungal infection, but is also phytotoxic. Mol. Breed. 5: 219–232.
  • Nelson, G. C. (2001). Genetically Modified Organisms in Agriculture: Economics and Politics. San Diego: Academic Press.
  • Nielsen, K., Payne, G. A., and Boston, R. S. (2001). Maize ribosome-inactivating protein inhibits normal development of Aspergillus nidulans and Aspergillus flavus. Mol Plant-Microbe Interact 14: 164–172.
  • Niu, C., Deng, X-Y., Hazra, S., Chu, Y., and Ozias-Akins, P. (2004). Introduction of antifungal genes into peanut. Proceedings of the USDA-ARS 17th Aflatoxin Elimination Workshop, p. 33.
  • Osborn, R., De Samblanx, G., Thevissen, K., Goderis, I., Torrekens, S., Van Leuven, F., Attenborough, S., Rees, S. B., and Broekaert, W. (1995). Isolation and characterization of plant defensins from seeds of Asteraceae, Fabaceae, Hippocastanaceae, and Saxifragaceae. FEBS Lett. 368: 257–262.
  • Ozias-Akins, P., Gill, R., Yang, H., and Lynch, R. (1999). Genetic engineering of peanut: progress with Bt, peroxidase, peptidyl MIM D4E1, and lipoxygenase. Proceedings of the USDA-ARS 1999 Aflatoxin Elimination Workshop, pp. 69–70.
  • Ozias-Akins, P., Yang, H., Gill, R., Fan, H., and Lynch, R. E. (2002). Reduction of aflatoxin contamination in peanut: A genetic engineering approach. In: Rajasekaran, K., Jacks, T. J., Finley, J. W., eds. Crop Biotechnology. American Chemical Society Symposium Series No. 829. Washington, DC: American Chemical Society. pp. 151–160.
  • Parkash, A., Ng, T. B., and Tso, W. W. (2002). Isolation and characterization of luffacylin, a ribosome inactivating peptide with anti-fungal activity from sponge gourd (Luffa cylindrica) seeds. Peptides 23: 1019–1024.
  • Patterson-Delafield, J., Szklarek, D., Marinez, R. J., and Lehrer, R. I. (1981). Microbicidal cationic proteins of rabbit alveolar macrophages: amino acid composition and functional attributes. Infect. Immun. 31: 723–731.
  • Paul, C., Naidoo, G., Forbes, A., Mikkilineni, V., White, D., and Rocheford, T. (2003). Quantitative trait loci for low aflatoxin production in two related maize populations. Theor. Appl. Genet. 107: 263–270.
  • Potrykus, I., and Spangenberg, G., eds. (1995). Gene Transfer to Plants. Springer Lab Manual. Berlin: Springer-Verlag.
  • Punja, Z. K. (2004). Fungal Disease Resistance in Plants - Biochemistry, Molecular Biology, and Genetic Engineering. New York: Food Products Press.
  • Punja, Z. K. (2006). Recent developments toward achieving fungal disease resistance in transgenic plants. Can J Plant Pathol 28: S298–S308.
  • Rajasekaran, K., Bhatnagar, D., Brown, R. L., Chen, Z-Y., Cary, J. W., and Cleveland, T. E. (2005). Enhancing food safety: prevention of preharvest aflatoxin contamination. In: Ramasamy, C., Ramanathan, S., Dhakshinamoorthy, M., eds. Perspectives of Agricultural Research and Development. Tamil Nadu Agricultural University Centennial Issue, Coimbatore, India. pp. 434–467.
  • Rajasekaran, K., Cary, J. W., Chen, Z.-Y., Brown, R. L., and Cleveland, T. E. (2008). Antifungal traits of a 14 kD maize kernel trypsin inhibitor protein in transgenic cotton. J. Crop Improv. 22(1): 1–16.
  • Rajasekaran, K., Cary, J. W., Cotty, P., and Cleveland, T. E. (2008). Analysis of fungal invasion, colonization, and resistance in cottonseed using a GFP-expressing Aspergillus flavus. Mycopathologia. 165: 89–97.
  • Rajasekaran, K., Cary, J. W., Jacks, T. J., and Cleveland, T. E. (2002). Genetic engineering for resistance to phytopathogens. In: Rajasekaran, K., Jacks, T. J., Finley, J. W., eds. Crop Biotechnology. American Chemical Society Symposium Series No. 829. Washington, DC: American Chemical Society. pp. 97–117.
  • Rajasekaran, K., Cary, J. W., Jacks, T. J., Stromberg, K., and Cleveland, T. E. (2000). Inhibition of fungal growth in planta and in vitro by transgenic tobacco expressing a bacterial nonheme chloroperoxidase gene, Plant Cell Rep. 19: 333–338.
  • Rajasekaran, K., Cary, J. W., Jaynes, J. M., and Cleveland, T. E. (2005). Disease resistance conferred by the expression of a gene encoding a synthetic peptide in transgenic cotton, Gossypium hirsutum L. plants. Plant Biotechnol. J. 3: 545–554.
  • Rajasekaran, K., Stromberg, K., Cary, J. W., and Cleveland, T. E. (2001). Broad-spectrum antimicrobial activity in vitro of the synthetic peptide D4E1. J. Agric. Food Chem. 49(6): 2799–2803.
  • Rajasekaran, K., Ulloa, M., Hutmacher, R., Cary, J. W., and Cleveland, T. E. (2006). Disease resistance in transgenic cottons. Proceedings of 2006 Beltwide Cotton Conferences. National Cotton Council, Memphis, TN. 1: 895–903.
  • Rao, A. G. (1995). Antimicrobial peptides, Mol. Plant Microbe Interact. 8: 6–13.
  • Reddy, K. V., Yedery, R. D., and Aranha, C. (2004). Antimicrobial peptides: Premises and promises. Int J Antimicrob Agents. 24: 536–547.
  • Reyes-López, C. A., Hernández-Santoyo, A., Pedraza-Escalona, M., Mendoza, G., Hernández-Arana, A., and Rodríguez-Romero, A. (2004). Insights into a conformational epitope of Hev b 6.02 (hevein). Biochem. Biophys. Res. Comm. 314: 123–130.
  • Russell, T. E. (1980). Aflatoxins in cottonseed. Publication Q422, University of Arizona, Cooperative Extension Service, Tucson.
  • Schardl, C. L., Byrd, A. D., Benzion, G., Altschuler, M. A., Hildebrand, D. F., and Hunt, A. G. (1987). Design and construction of a versatile system for the expression of foreign genes in plants. Gene 61(1): 1–11.
  • Segura, A., Moreno, M., Madueno, F., Molina, A., and Garcia-Olmedo, F. (1999). Snakin-1, a peptide from potato that is active against plant pathogens. Mol. Plant Microbe Interact. 12: 16–23.
  • Selitrennikoff, C. (2001). Antifungal proteins. Appl. Environ. Microbiol. 67: 2883–2894.
  • Shao, F., Hu, Z., Xiong, Y., Huang, Q., Wang, C., Zhu, R., and Wang, D. (1999). A new antifungal peptide from the seeds of Phytolacca americana: characterization, amino acid sequence and cDNA cloning. Biochem. Biophys. Acta 1430: 262–268.
  • Sharma, N., Park, S.-W., Vepachedu, R., Barbieri, L., Ciani, M., Strirpe, F., Savary, B. J., and Vivanco, J. M. (2004). Isolation and characterization of an RIP (ribosome-inactivating protein)-like protein from tobacco with dual enzymatic activity. Plant Physiol. 134: 171–181.
  • Simmonds, J., Cass, L., and Lachance, J. (1998). Genetic transformation of Ontario maize inbreds. Proceedings of the Joint Meeting of the Fiftieth Annual Southern Corn Improvement Conference and the Fifty-Third Annual Northeastern Corn Improvement Conference. Blacksburg, VA. p. 10.
  • Skadsen, R. W., Sathish, P., Federico, M. L., Abebe, T., Fu, J., and Kaeppler, H. F. (2002). Cloning of the promoter for a novel barley gene, Lem1, and its organ-specific promotion of Gfp expression in lemma and palea. Plant Mol. Biol. 49(5): 545–555.
  • Spelbrink, R. G., Dilmac, N., Allen, A., Smith, T. J., Shah, D. M., and Hockerman, G. H. (2004). Differential antifungal and calcium channel-blocking activity among structurally related plant defensins. Plant Physiol. 135: 2055–2067.
  • Stintzi, A., Heitz, T., Prasad, V., Wiedmann-Merdinoglu, S., Kauffmann, S., Geoffroy, P., Legrand, M., and Fritig, B. (1993). Plant pathogenesis-related proteins and their role in defense against pathogens. Biocheme 75: 687–706.
  • Stirpe, F., and Barbieri, L. (1986). Ribosome-inactivating proteins up to date. FEBS Lett. 195: 1–8.
  • Sunilkumar, G., Connell, J. P., Smith, C. W., Reddy, A. S., and Rathore, K. S. (2002). Cotton alpha-globulin promoter: isolation and functional characterization in transgenic cotton, Arabidopsis, and tobacco. Transgenic Res. 11(4): 347–359.
  • Tailor, R., Acland, D., Attenborough, S., Cammue, B., Evans, I., Osborn, R., Ray, J., Rees, S., and Broekaert, W. (1997). A novel family of small cysteine-rich antimicrobial peptides from the seed of Impatiens balsamina is derived from a single precursor protein. J. Biol. Chem. 2272: 24480–24487.
  • Tamayo, M. C., Rufat, M., Bravo, J. M., and San Segundo, B. (2000). Accumulation of a maize proteinase inhibitor in response to wounding and insect feeding, and characterization of its activity toward digestive proteinases of Spodoptera littoralis larvae. Planta 211(1): 62–71.
  • Terras, F., Eggermont, K., Kovaleva, V., Raikhel, N. V., Osborn, R. W., Kester, A., Rees, S. B., Vanderleyden, J., Cammue, B. P. A., and Broekaert, W. F. (1995). Small cysteine-rich antifungal proteins from radish: their role in host defense. Plant Cell 7: 573–588.
  • Terras, F., Shoops, H., and De Bolle, M. (1992). Analysis of two novel classes of plant antifungal proteins from radish (Raphanus sativus L.) seeds. J. Biol. Chem. 267: 15301–15309.
  • Terras, F., Torrekens, S., Van Leuven, F., Osborn, R. W., Vanderleyden, J., Cammue, B. P. A., and Broekaert, W. F. (1993). A new family of basic cysteine-rich plant antifungal proteins from Brassicaceae species. FEBS Lett. 316: 233–240.
  • Thevissen, K., Cammue, B. P., Lemaire, K., Winderickx, J., Dickson, R. C., Lester, R. I., Ferket, K. K., Van even, F., Parret, A. H., and Broekaert, W. F. (2000). A gene encoding a sphingolipid biosynthesis enzyme determines the sensitivity of merckii. Proc. Natl. Acad. Sci. U S A 97: 9531–9536.
  • Thevissen, K., François, I. E. J. A., Sijtsma, L., van Amerongen, A., Schaaper, W. M. M., Meloen, R., Posthuma-Trumpie, T., Broekaert, W. F., and Cammue, B. P. A. (2005). Antifungal activity of synthetic peptides derived from Impatiens balsamina antimicrobial peptides Ib-AMP1 and Ib-AMP4. Peptides. 26: 1113–1119.
  • Thevissen, K., Ghazi, A., De Samblanx, G., Brownlee, C., Osborn, R., and Broekaert, W. (1996). Fungal membrane responses induced by plant defensins and thionins. J. Biol. Chem. 271: 15018–15025.
  • Thevissen, K., Osborn, R. W., Acland, D. P., and Broekaert, W. F. (1997). Specific, high affinity binding sites for an antifungal plant defensins on Neurospora crassa hyphae and microsomal membranes. J. Biol. Chem. 272: 32176–32181.
  • Tzfira, T., and Citovsky, V., eds. (2008). Agrobacterium – from Biology to Biotechnology. New York: Springer Science.
  • Van den Bergh, K. P. B., Rougé, P., Proost, P., Coosemans, J., Krouglova, T., Engelborghs, Y., Peumans, W. J., and Van Damme, E. J. M. (2004). Synergistic antifungal activity of two chitin-binding proteins from spindle tree (Euonymus europaeus L.). Planta 219: 221–232.
  • Van Loon, L. C., Pierpoint, W. S., Boller, T., and Conejero, V. (1994). Recommendations of naming plant pathogenesis-related proteins. Plant Mol. Biol. Report. 12: 245–264.
  • Van Loon, L. C., and van Strien, E. A. (1999). The families of pathogenesis-related proteins, their activities, and comparative analysis of PR-1 type proteins. Physiol. Mol. Plant Pathol. 55: 85–97.
  • Van Parijs, J., Broekaert, W., Goldstein, I., and Peumans, W. (1991). Hevein: an antifungal protein from rubber-tree (Hevea braziliensis) latex. Planta 183: 258–264.
  • Verma, D., and Daniell, H. (2007). Chloroplast vector systems for biotechnology applications. Plant Physiol 145(4): 1129–1143.
  • Walton, J. D. (1997). Biochemical Plant Pathology. In: Dey, P. M., and Harborne, J. B., eds. Plant Biochemistry. San Diego, CA: Academic Press, pp. 487–502.
  • Walujono, K., Scholma, R. A., Beintema, J. J., Mariono, A., and Hahn, A. M. (1975). Amino acid sequence of hevein. In Proceedings of the International Rubber conference, vol. 2. Rubber Research Institute of Malaysia. Kuala Lumpur, Malaysia. pp. 518–531.
  • Wang, X., Bauw, G., Van Damme, E. J., Peumans, W. J., Chen, Z. L., Van Montagu, M., Angenon, G., and Dillen, W. (2001). Gastrodianin-like mannose-binding proteins: a novel class of plant proteins with antifungal properties. Plant J. 25: 651–661.
  • Wang, H., and Ng, T. B. (2001). Isolation of a novel deoxyribonuclease with antifungal activity from Asparagus officinalis seeds. Biochem. Biophys. Res. Comm. 289: 120–124.
  • Wang, H.-X., Yang, T., Zeng, Y., and Hu, Z. (2007). Expression analysis of the grastrodianin gene ga4B in an achlorophyllous plant Gastrodia elata B1. Plant Cell Rep. 26: 253–259.
  • Ward, E. R., Payne, G. B., Moyer, M. B., Williams, S. C., Dincher, S. S., Sharke, K. C., Beck, J. J., Taylor, H. P., Ahl-Goy, P., Meins, F., and Ryals, J. A. (1991). Differential regulation of β1,3-glucanase messenger RNAs in response to pathogen infection. Plant Physiol. 96: 390–397.
  • Weissinger, A., Liu, Y-S., Scanlon, S., Murray, J., Cleveland, T. E., Jaynes, J., Mirkov, E., and Moonan, F. (1999). Transformation of peanut with the defensive peptidyl MIM D5C. Proceedings of the USDA-ARS Aflatoxin Elimination Workshop, pp. 66–68.
  • Weissinger, A., Wu, M., and Cleveland, T. E. (2003). Expression in transgenic peanut of maize RIP 1, a protein with activity against Aspergillus spp. Proceedings of the USDA-ARS Aflatoxin Elimination Workshop, p. 100.
  • White, D. G., Rocheford, T. R., Naidoo, G., Paul, C., Rozzi, R. D., Severns, D. E., and Forbes, A. M. (1999). Inheritance of molecular markers associated with and breeding for resistance to Aspergillus ear rot and aflatoxin production in corn. Proceedings of the USDA-ARS Aflatoxin Elimination Workshop, pp. 7–8.
  • Wolffram, C., van Pee, K.-H., and Lingens, F. (1988). Cloning and high-level expression of a chloroperoxidase gene from Pseudomonas pyrrocinia. FEBS Letters. 238: 325–328.
  • Wu, G., Short, B.J., Lawrence, E. B., Levine, E. B., Fitzsimmons, K. C., and Shah, D. M., (1995). Disease resistance conferred by expression of a gene encoding H2O2-generating glucose oxidase in transgenic potato plants. Plant Cell 7: 1357–1368.
  • Xu, Q., Liu, Y., Wang, X., Gu, H., and Chen, Z. (1998). Purification and characterization of a novel anti-fungal protein from Gastrodia elata. Plant Physiol. Biochem. 36: 899–905.
  • Yevtushenko, D. P., and Misra, S. (2007). Comparison of pathogen-induced expression and efficacy of two amphibian antimicrobial peptides, MsrA2 and temporin A, for engineering wide-spectrum disease resistance in tobacco. Plant Biotechnol. J. 5(6): 720–734.
  • Zasloff, M. (1987). Magainins, a class of antimicrobial peptides from Xenopus skin: isolation, characterization of two active forms, and partial cDNA sequence of a precursor. Proc Natl Acad Sci U S A 84: 5449–5453.
  • Zipf, A. E., and Rajasekaran, K. (2003). Ecological impact of Bt cotton. J. New Seeds 5(2/3): 115–135.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.