1,168
Views
211
CrossRef citations to date
0
Altmetric
Review Article

Genes, gene clusters, and biosynthesis of trichothecenes and fumonisins in Fusarium

, &
Pages 198-215 | Received 10 Mar 2009, Accepted 07 Apr 2009, Published online: 28 Jul 2009

References

  • Alexander NJ, Hohn TM, McCormick SP. (1998). The TRI11 gene of Fusarium sporotrichioides encodes a cytochrome P450 monooxygenase required for C-15 hydroxylation in trichothecene biosynthesis. Appl Environ Microbiol. 64: 221–225.
  • Alexander NJ, Hohn TM, McCormick SP. (1999a). TRI12, a trichothecene efflux pump form Fusarium sporotrichioides: gene isolation and expression in yeast. Mol Gen Genet. 261: 977–984.
  • Alexander NJ, McCormick SP, Larson TM, Jurgenson JE. (2004). Expression of Tri15 in Fusarium sporotrichioides. Curr Genet. 45: 157–162.
  • Alexander NJ, McCormick SP, Ziegenhorn, SL (1999b). Phytotoxicity of selected trichothecenes using Chlamydomonas reinhardtii as a model system. Nat Toxins. 7: 265–269.
  • Alexander NJ, Proctor RH, McCormick SP, Plattner RD. (1997). Genetic and molecular aspects of the biosynthesis of trichothecenes by Fusarium. Cereal Res Commun. 25: 315–320.
  • Beremand MN, Desjardins AE. (1988). Trichothecene biosynthesis in Gibberella pulicaris: inheritance of C-8 hydroxylation. J Ind Microbiol. 3: 167–174.
  • Beremand MN, McCormick SP. (1992). Biosynthesis and regulation of trichothecene production by Fusarium species. In: Bhatnagar D, Lillehoj EB, Arora DK, eds. Handbook of Applied Mycology: Mycotoxins in Ecological Systems, Vol 5. New York, NY: Marcel Dekker, Inc, pp. 359–384.
  • Bezuidenhout SC, Gelderblom WCA, Gorst-Allman CP, Horak RM, Marasas WFO, Spiteller G, Bleggaar R. (1988). Structure elucidation of the fumonisins, mycotoxins from Fusarium moniliforme. J Chem Soc Chem Commun. 1988: 743–745.
  • Bojja RS, Cerny RL, Proctor RH, Du L. (2004). Determining the biosynthetic sequence in the early steps of the fumonisin pathway by use of three gene-disruption mutants of Fusarium verticillioides. J Agric Food Chem. 52: 2855–2860.
  • Brandwagt BF, Mesbah LA, Takken FLW, Laurent PL, Kneppers TJA, Hille J, Nijkamp HJJ. (2000). A longevity assurance gene homolog of tomato mediates resistance to Alternaria alternata f. sp. lycopersici toxins and fumonisin B1. Proc Natl Acad Sci U S A. 97: 4961–4966.
  • Branham BE, Plattner RD. (1993). Alanine is a precursor in the biosynthesis of fumonisin B1 by Fusarium moniliforme. Mycopathologia. 124: 99–104.
  • Brown DW, Butchko RAE, Busman M, Proctor RH. (2007). The Fusarium verticillioides FUM gene cluster encodes a Zn (II)2Cys6 protein that affects FUM gene expression and fumonisin production. Eukaryot Cell. 6: 1210–1218.
  • Brown DW, Cheung F, Proctor RH, Butchko RAE, Zheng L, Lee Y, Utterback T, Smith S, Feldblyum T, Glenn AE, Plattner RD, Kendra DF, Town CD, Whitelaw CA. (2005). Analysis of 87,000 expressed sequence tags reveals alternatively spliced introns in multiple genes of the fumonisin gene cluster. Fungal Genet Biol. 42: 848–861.
  • Brown DW, Dyer JM, McCormick SP, Kendra DF, Plattner RD. (2004). Functional demarcation of the Fusarium core trichothecene gene cluster. Fungal Genet Biol. 41: 462.
  • Brown DW, McCormick SP, Alexander NJ, Proctor RH, Desjardins AE. (2001). A genetic and biochemical approach to study trichothecene diversity in Fusarium sporotrichioides and Fusarium graminearum. Fungal Genet Biol. 32: 121–133.
  • Brown DW, McCormick SP, Alexander NJ, Proctor RH, Desjardins AE. (2002). Inactivation of a cytochrome P-450 is a determinant of trichothecene diversity in Fusarium species. Fungal Genet Biol. 36: 224–233.
  • Brown DW, Proctor RH, Dyer RB, Plattner RD. (2003). Characterization of a Fusarium 2-gene cluster involved in trichothecene C-8 modification. J Agric Food Chem. 51: 7936–7944.
  • Butchko RAE, Plattner RD, Proctor RH. (2003a). FUM13 encodes a short chain dehydrogenase/reductase required for C-3 carbonyl reduction during fumonisin biosynthesis in Gibberella moniliformis. J Agric Food Chem. 51: 3000–3006.
  • Butchko RAE, Plattner RD, Proctor RH. (2003b). FUM9 is required for C-5 hydroxylation of fumonisins and complements the meiotically defined Fum3 locus in Gibberella moniliformis. Appl Environ Microbiol. 69: 6935–6937.
  • Butchko RAE, Plattner RD, Proctor RH. (2006). Deletion analysis of FUM genes involved in tricarballylic ester formation during fumonisin biosynthesis. J Agric Food Chem. 54: 9398–9404.
  • Caldas ED, Sadilkova K, Ward BL, Jones AD, Winter CK, Gilchrist DG. (1998). Biosynthetic studies of fumonisin B1 and AAL toxins. J Agric Food Chem. 46: 4734–4743.
  • Chandler EA, Simpson DR, Thomsett MA, Nicholson P. (2003). Development of PCR assays to Tri7 and Tri13 trichothecene biosynthetic genes, and characterisation of chemotypes of Fusarium graminearum, Fusarium culmorum and Fusarium cerealis. Physiol Mol Plant Pathol. 62: 355–367.
  • Cole JR, Cox RJ. (1981). Handbook of Toxic Fungal Metabolites. New York, NY: Academic Press.
  • Desjardins AE (2006). Fusarium Mycotoxins Chemistry, Genetics and Biology. St. Paul, MN: APS Press.
  • Desjardins AE. (2008). Natural product chemistry meets genetics: when is a genotype a chemotype? J Agric Food Chem. 56: 7587–7592.
  • Desjardins AE, Busman M, Muhitch MJ, Proctor RH. (2007a). Complementary host-pathogen genetic analyses of the role of fumonisins in the Zea mays-Gibberella moniliformis interaction. Physiol Mol Plant Pathol. 70: 149–160.
  • Desjardins AE, Hohn TM, McCormick SP. (1993). Trichothecene biosynthesis in Fusarium species: chemistry, genetics, and significance. Microbiol Rev. 57: 595–604.
  • Desjardins, AE, McCormick, SP, and Appell, M. (2007b). Structure-activity relationships of trichothecene toxins in an Arabidopsis thaliana leaf assay. J Agric Food Chem. 55: 6487–6492.
  • Desjardins AE, Munkvold GP, Plattner RD, Proctor RH. (2002). FUM1–a gene required for fumonisin biosynthesis but not for maize ear rot and ear infection by Gibberella moniliformis in field tests. Mol Plant-Microbe Interact. 15: 1157–1164.
  • Desjardins AE, Plattner RD, Beremand MN. (1987). Ancymidol blocks trichothecene biosynthesis and leads to accumulation of trichodiene in Fusarium sporotrichioides and Gibberella pulicaris. Appl Environ Microbiol. 53: 1860–1865.
  • Desjardins AE, Plattner RD, Lu M, Claflin LE. (1998). Distribution of fumonisins in maize ears infected with strains of Fusarium moniliforme that differ in fumonisin production. Plant Dis. 82: 953–958.
  • Desjardins AE, Plattner RD, Nelson PE, Nelsen TC, Leslie JF. (1995). Genetic analysis of fumonisin production and virulence of Gibberella fujikuroi mating population A (Fusarium moniliforme) on maize (Zea mays) seedlings. Appl Environ Microbiol. 61: 79–86.
  • Desjardins AE, Plattner RD, Proctor RH (1996a). Linkage among genes responsible for fumonisin biosynthesis in Gibberella fujikuroi mating population A. Appl Environ Microbiol. 62: 2571–2576.
  • Desjardins AE, Plattner RD, Shackelford DD, Leslie JF, Nelson PE. (1992). Heritability of fumonisin B1 production in Gibberella fujikuroi mating population A. Appl Environ Microbiol. 58: 2799–2805.
  • Desjardins AE, Plattner RD, Vanmiddlesworth F. (1986). Trichothecene biosynthesis in Fusarium sporotrichioides: origin of the oxygen atoms of T-2 toxin. Appl Environ Microbiol. 51: 493–497.
  • Desjardins AE, Proctor RH, Bai G, McCormick SP, Shaner G, Buechley G, Hohn TM. (1996b). Reduced virulence of trichothecene-nonproducing mutants of Gibberella zeae in wheat field tests. Mol Plant Microbe Interact. 9: 775–781.
  • Ding Y, Bojja RS, Du L. (2004). Fum3p, a 2-ketoglutarate- dependent dioxygenase required for C-5 hydroxylation of fumonisins in Fusarium verticillioides. Appl Environ Microbiol. 70: 1931–1934.
  • Du L, Zhu X, Gerber R, Huffman J, Lou L, Jorgenson J, Yu F, Zaleta-Rivera K, Wang Q. (2008). Biosynthesis of sphinganine-analog mycotoxins. J Ind Microbiol Biotechnol. 35: 455–464.
  • Dyer RB, Plattner RD, Kendra DF, Brown DW. (2005). Fusarium graminearum TRI14 is required for high virulence and DON production on wheat but not for DON synthesis in vitro. J Agric Food Chem. 53: 9281–9287.
  • Flaherty JE, Woloshuk CP. (2004). Regulation of fumonisin biosynthesis in Fusarium verticillioides by a zinc binuclear cluster-type gene, ZFR1. Appl Environ Microbiol. 70: 2653–2659.
  • Frisvad JC, Smedsgaard J, Samson RA, Larsen TO, Thrane U. (2007). Fumonisin B2 production by Aspergillus niger. J Agric Food Chem. 55: 9727–9732.
  • Gale LR, Bryant JD, Calvo S, Giese H, Katan T, O’Donnell K, Suga H, Taga M, Usgaard TR, Ward TJ, Kistler HC. (2005). Chromosome complement of the fungal plant pathogen Fusarium graminearum based on genetic and physical mapping and cytological observations. Genetics. 171: 985–1001.
  • Garvey GS, McCormick SP, Rayment, I. (2008). Structural and functional characterization of the TRI101 trichotehecene 3-O-acetyltransferase from Fusarium sporotrichioides and Fusarium graminearum: kinetic insights to combating Fusarium head blight. J Biol Chem. 283: 1660–1669.
  • Gerber R, Lou L, Du L. (2009). A PLP-dependent polyketide chain releasing mechanism in the biosynthesis of mycotoxin fumonisins in Fusarium verticillioides. J Am Chem Soc. 131: 3148–3149.
  • Glenn AE, Zitomer NC, Zimeri AM, Williams LD, Riley RT, Proctor RH. (2008). Transformation-mediated complementation of a FUM gene cluster deletion in Fusarium verticilioides restores both fumonisin production and pathogenicity on maize seedlings. Mol Plant-Microbe Interact. 21: 87–97.
  • Harris LJ, Gleddie SC. (2001). A modified Rpl3 gene from rice confers tolerance of the Fusarium graminearum mycotoxin deoxynivalenol to transgenic tobacco. Physiol Mol Plant Pathol. 58: 1–9.
  • Harris LJ, Desjardins AE, Plattner RD, Nicholson P, Butler G, Young JC, Weston G, Proctor RH, Hohn TM. (1999). Possible role of trichothecene mycotoxins in virulence of Fusarium graminearum on maize. Plant Dis. 83: 954–960.
  • Hesketh AR, Gledhill L, Bycroft BW, Dewick PM, Gilbert J. (1993). Potential inhibitors of trichothecene biosynthesis in Fusarium culmorum. Phytochemistry. 32: 93–104.
  • Hesketh AR, Gledhill L, Marsh DC, Bycroft BW, Dewick PM, Gilbert J. (1991). Biosynthesis of trichothecene mycotoxins: identification of isotrichodiol as a post-trichothecene intermediate. Phytochemistry. 30: 2243.
  • Hohn TM, Beremand, P. (1989). Isolation and nucleotide sequence of a sesquiterpene cyclase gene from the trichothecene- producing fungus Fusarium sporotrichioides. Gene. 79: 131–138.
  • Hohn TM, Desjardins AE. (1992). Isolation and gene disruption of the Tox5 gene encoding trichodiene synthase in Gibberella pulicaris. Mol Plant Microbe Interact. 5: 249–256.
  • Hohn TM, Krishna R, Proctor RH. (1999). Characterization of a transcriptional activator controlling trichothecene toxin biosynthesis. Fungal Genet Biol. 26: 224–235.
  • Hohn TM, McCormick SP, Desjardins AE. (1993). Evidence for a gene cluster involving trichothecene-pathway biosynthetic genes in Fusarium sporotrichioides. Curr Genet. 24: 291–295.
  • Hohn TM, Vanmiddlesworth F. (1986). Purification and characterization of the sesquiterpene cyclase trichodiene synthetase from Fusarium sporotrichioides. Arch Biochem Biosphys. 251: 756–761.
  • Jurgenson JE, Bowden RL, Zeller KA, Leslie JF, Alexander NA, Plattner RD. (2002). A genetic map of Gibberella zeae (Fusarium graminearum). Genetics. 160: 1431–1460.
  • Keller NP, Brown DW, Butchko RA, Fernandes M, Kelkar H, Nesbitt C, Segner S, Bhatnagar D, Cleveland TE, Adams TH. (1995). A conserved polyketide mycotoxin gene cluster in Aspergillus nidulans. In Eklund M, Richard JL, Mise K, eds. Molecular Approaches to Food Safety Issues Involving Toxic Microorganisms. Alaken Inc, Fort Collins, pp. 263–277.
  • Kimura M, Kaneko I, Komiyama M, Takatsuki A, Koshino H, Yoneyama K, Yamaguchi I. (1998). Trichothecene 3-O-acetyltransfease protects both the producing organism and transformed yeast from related mycotoxins. J Biol Chem. 273: 1654–1661.
  • Kimura M, Tokai T, O’Donnell K, Ward TJ, Fujimura M, Hamamoto H, Shibata T, Yamaguchi I. (2003). The trichothecene biosynthesis gene cluster of Fusarium graminearum F15 contains a limited number of essential pathway genes and expressed non- essential genes. FEBS Lett. 359: 105–110.
  • Kimura M, Tokai T, Takahashi-Ando N, Ohsato S, Fujimura M. (2007). Molecular and genetic studies of Fusarium trichothecene biosynthesis pathways, genes, and evolution. Biosci Biotechnol Biochem. 71: 2105–2123.
  • Laurent D, Platzer N, Kohler F, Sauviat MP, Pellegrin G. (1989). Macrofusine et micromoniline: duex nouvelles mycotoxines isolées de maïs infesté par Fusarium moniliforme. Microbiol Alim Nutr. 7: 9–16.
  • Lee J, Jurgenson JE, Leslie JF, Bowden RL. (2008). Alignment of genetic and physical maps of Gibberella zeae. Appl Environ Microbiol. 74: 2349–2359.
  • Lee T, Han Y-K, Kim K-H, Yun S-H, Lee Y-W. (2002). Tri13 and Tri7 determine deoxynivalenol- and nivalenol-producing chemotypes of Gibberella zeae. Appl Environ Microbiol. 68: 2148–2154.
  • Lee T, Oh D-W, Kim H-S, Lee J, Kim Y-H, Yun S-H, Lee Y-W. (2001). Identification of deoxynivalenol- and nivalenol-producing chemotypes of Gibberella zeae by using PCR. Appl Environ Microbiol. 67: 2966–2972.
  • Leslie JF, Anderson LL, Bowden RL, Lee Y-W. (2007). Inter- and intra-specific genetic variation in Fusarium. Int J Food Microbiol. 119: 25–32.
  • MacKenzie SE, Savard ME, Blackwell BA, Miller JD, ApSimon JW. (1998). Isolation of a new fumonisin from Fusarium moniliforme grown in liquid culture. J Nat Prod. 61: 367–369.
  • Maier FJ, Miedaner T, Hadeler B, Felk A, Salomon S, Lemmens M, Kassner H, Schäfer W. (2006). Involvement of trichothecnes in fusarioses of wheat, barley and maize evaluated by gene disruption of the trichodiene synthase (Tri5) gene in three field isolates of different chemotype and virulence. Molec Plant Pathol. 7: 449–461.
  • Manoharan M, Dahleen LS, Hohn TM, Neate SM, Yu X, Alexander NJ, McCormick SP, Bregitzer P, Schwarz PB, Horsley RD. (2006). Expression of 3-OH trichothecene acetyl-transferase in barley (Hordeum vulgare L ) and effects on deoxynivalenol. Plant Sci. 71: 699–796.
  • Marasas WFO, Nelson PE, Toussoun TA. (1984). Toxigenic Fusarium Species: Identity and Mycotoxicology. University Park, PN: The Pennsylvania State University Press.
  • McCabe AP, Riach MBR, Unkles SE, Kinghorn JR. (1990). The Aspergillus nidulans npeA locus consists of three contiguous genes required for penicillin biosynthesis. EMBO J. 9: 279–287.
  • McCormick SP Alexander NA. (2002). Fusarium TRI8 encodes a trichothecene C-3 esterase. Appl Environ Microbiol. 68: 2959–2964.
  • McCormick SP, Alexander NA, Proctor RH. (2006a). Fusarium Tri4 encodes a multifunctional oxygenase required for trichothecene biosynthesis. Can J Microbiol. 52: 636–642.
  • McCormick SP, Alexander NJ, Proctor RH. (2006b). Heterologous expression of two trichothecene P450 genes in Fusarium verticillioides. Can J Microbiol. 52: 220–226.
  • McCormick SP, Alexander NJ, Trapp SC, Hohn TM. (1999). Disruption of TRI101, the gene encoding trichothecene 3-O-acetyltransferase, from Fusarium sporotrichioides. Appl Environ Microbiol. 65: 5252–5256.
  • McCormick SP, Harris LJ, Alexander NJ, Ouellet T, Saparno A, Allard S, Desjardins AE. (2004). Tri1 in Fusarium graminearum encodes a P450 oxygenase. Appl Environ Microbiol. 70: 2044–2051.
  • McCormick SP, Hohn TM. (1997). Accumulation of trichothecenes in liquid cultures of a Fusarium sporotrichioides mutant lacking a functional trichothecene C-15 hydroxylase. Appl Environ Microbiol. 63: 1685–1688.
  • McCormick SP, Hohn TM, Desjardins AE. (1996). Isolation and characterization of Tri3, a gene encoding 15-O- acetyltransferase from Fusarium sporotrichioides. Appl Environ Microbiol. 62: 353–359.
  • McCormick SP, Taylor SL, Plattner RD, Beremand MN. (1989). New modified trichothecenes accumulated in solid culture by mutant strains of Fusarium sporotrichioides. Appl Environ Microbiol. 55: 2195–2199.
  • McCormick SP, Taylor SL, Plattner RD, Beremand MN. (1990). Bioconversion of possible T-2 toxin precursors by a mutant strain of Fusarium sporotrichioides NRRL 3299. Appl Environ Microbiol. 56: 702–706.
  • Meek IB, Peplow AW, Ake C, Phillips TD, Beremand MN. (2003). Tri1 encodes the cytochrome P450 monooxygenase for C-8 hydroxylation during trichothecene biosynthesis in Fusarium sporotrichioides and resides upstream of another new Tri gene. Appl Environ Microbiol. 69: 1607–1613.
  • Merrill AH, Schmelz E-M, Dillehay DL, Spiegel S, Shayman JA, Schroeder JJ, Riley RT, Voss KA, Wang E. (1997). Sphingolipids–the enigmatic lipid class: biochemistry, physiology, and pathophysiology. Toxicol Appl Pharmacol. 142: 208–225.
  • Mitterbauer R, Poppenberger B, Raditschnig A, Lucyshyn D, Lemmens M, Glössl J, Adam G. (2004). Toxin-dependent utilization of engineered ribosomal protein L3 limits trichothecene resistance in transgenic plants. Plant Biotech J. 2: 329–340.
  • Munkvold GP, Desjardins AE. (1997). Fumonisins in maize: can we reduce their occurrence? Plant Dis. 81: 556–565.
  • O’Donnell K, Ward TJ, Geiser DM, Kistler HC, Aoki T. (2006). Genealogical concordance between the mating type locus and seven other nuclear genes supports formal recognition of nine phylogenetically distinct species within the Fusarium graminearum clade. Fungal Genet Biol. 41: 600–623.
  • Okubara PA, Blechl AE, McCormick SP, Alexander NJ, Dill-Macky R, Hohn TM. (2002). Engineering deoxynivalenol metabolism in wheat through the expression of a fungal trichothecene acetyltransferase gene. Theor Appl Genet. 106: 74–83.
  • Paul PA, Lipps PE, Madden LV. (2006). Meta-analysis of regression coefficients for the relationship between Fusarium head blight and deoxynivalenol content of wheat. Phytopathology. 96: 951–961.
  • Peplow AW, Meek IB, Wiles MC, Phillips TD, Beremand MN. (2003a). Tri16 is required for esterification of position C-8 during trichothecene mycotoxin production by Fusarium sporotrichioides. Appl Environ Microbiol. 69: 5935–5940.
  • Peplow AW, Tag AG, Garifullina GF, Beremand MN. (2003b). Identification of new genes positively regulated by TRI10 and a regulatory network for trichothecene mycotoxin production. Appl Environ Microbiol. 69: 2731–2736.
  • Plattner RD, Desjardins AE, Leslie JF, Nelson PE. (1996). Identification and characterization of strains of Gibberella fujikuroi mating population A with rare fumonisin production phenotypes. Mycologia. 88: 416–424.
  • Poppenberger B, Berthiller F, Lucyshyn D, Sieberer T, Schuhmacher R, Krska R, Kuchler K, Glössl J, Luschnig C, Adam G. (2003). Detoxification of the Fusarium mycotoxin deoxynivalenol by a UDP-glucosyltransferase from Arabidopsis thaliana. J Biol Chem. 278: 47905–47914.
  • Proctor RH, Brown DW, Plattner RD, Desjardins AE. (2003). Co-expression of 15 contiguous genes delineates a fumonisin biosynthetic gene cluster in Gibberella moniliformis. Fungal Genet Biol. 38: 237–249.
  • Proctor RH, Busman M, Seo J-A, Lee Y-W, Plattner RD. (2008). A fumonisin biosynthetic gene cluster in Fusarium oxysporum strain O-1890 and the genetic basis for B versus C fumonisin production. Fungal Genet Biol. 45: 1016–1026.
  • Proctor RH, Desjardins AE, Plattner RD. (1999a). Biosynthetic and genetic relationships of B-series fumonisins produced by Gibberella fujikuroi mating population A. Nat Toxins. 7: 251–258.
  • Proctor RH, Desjardins AE, Plattner RD, Hohn TM. (1999b). A polyketide synthase gene required for biosynthesis of fumonisin mycotoxins in Gibberella fujikuroi mating population A. Fungal Genet Biol. 27: 100–112.
  • Proctor RH, Hohn TM, McCormick SP. (1995a). Reduced virulence of Gibberella zeae caused by disruption of a trichothecene toxin biosynthectic gene. Mol Plant Microbe Interact. 8: 593–601.
  • Proctor RH, Hohn TM, McCormick SP, Desjardins AE. (1995b). Tri6 encodes an unusual zinc finger protein involved in regulation of trichothecene biosynthesis in Fusarium sporotrichioides. Appl Environ Microbiol. 61: 1923–1930.
  • Proctor RH, Plattner RD, Brown DW, Seo J-A, Lee Y-W. (2004). Discontinuous distribution of fumonisin biosynthetic genes in the Gibberella fujikuroi species complex. Mycol Res. 108: 815–822.
  • Proctor RH, Plattner RD, Desjardins AE, Busman M, Butchko RAE. (2006). Fumonisin production in the maize pathogen Fusarium verticillioides: genetic basis of naturally occurring chemical variation. J Agric Food Chem. 54: 2424–2430.
  • Rheeder JP, Marasas WFO, Vismer HF. (2002). Production of fumonisin analogs by Fusarium species. Appl Environ Microbiol. 68: 2101–2105.
  • Riley RT, Wang E, Schroeder JJ, Smith ER, Plattner RD, Abbas H, Yoo H-S, Merrill AF. (1996). Evidence for disruption of sphingolipid metabolism as a contributing factor in the toxicity and carcinogenicity of fumonisins. Nat Toxins. 4: 3–15.
  • Robertson-Hoyt LA, Betrán J, Payne GA, White DG, Isakeit T, Maragos CM, Molnár TL, Holland JB. (2007). Relationships among resistances to Fusarium and Aspergillus ear rots and contamination by fumoinisin and aflatoxin in maize. Phytopathology. 97: 311–317.
  • Rynkiewicz MJ, Cane DE, Christianson DW. (2001). Structure of trichodiene synthase from Fusarium sporotrichioides provides mechanistic inferences on the terpene cyclization cascade. Proc Natl Acad Sci U S A. 98: 13543–13548.
  • Seo J-A, Kim J-C, Lee Y-W. (1996). Isolation and characterization of two new type C fumonisins produced by Fusarium oxysporum. J Nat Prod. 59: 1003–1005.
  • Seo J-A, Proctor RH, Plattner RD. (2001). Characterization of four clustered and coregulated genes associated with fumonisin biosynthesis in Fusarium verticillioides. Fungal Genet Biol. 34: 155–165.
  • Sewram V, Mshicileli N, Shepard GS, Vismer HF, Rheeder JP, Lee Y-W, Leslie JF, Marasas WFO. (2005). Production of fumonisin B and C analogues by several Fusarium species. J Agric Food Chem. 53: 4861–4866.
  • Shim W-B, Woloshuk CP. (2001). Regulation of fumonisin B1 biosynthesis and conidiation in Fusarium verticillioides by a cyclin-like (C-type) gene, FCC1. Appl Environ Microbiol. 67: 1607–1612.
  • Skory CD, Chang P-K, Cary J, Linz JE. (1992). Isolation and characterization of a gene from Aspergillus parasiticus associated with the conversion of versicolorin A to sterigmatocystin in aflatoxin biosynthesis. Appl Environ Microbiol. 58: 3527–3537.
  • Starkey DE, Ward TJ, Aoki T, Gale LR, Kistler HC, Geiser DM, Suga H, Tóth B, Varga J, O’Donnell K. (2007). Global molecular surveillance reveals novel Fusarium head blight species and trichothecene toxin diversity. Fungal Genet Biol. 44: 1191–1204.
  • Suga H, Karugia GW, Ward T, Gale LR, Tomimura K, Nakajima T, Miyasaka A, Koizumi S, Kageyama K, Hyakumachi M. (2008). Molecular characterization of the Fusarium graminearum species complex in Japan. Phytopathology. 98: 159–166.
  • Tag AG, Garifullina GF, Peplow AW, Ake C, Phillips TD, Hohn TM, Beremand MN. (2001). A novel regulatory gene, Tri10, controls trichothecene toxin production and gene expression. Appl Environ Microbiol. 67: 5294–5302.
  • Tokai T, Koshino H, Takahashi-Ando N, Sato M, Fujimura M, Kimura M. (2007). Fusarium Tri4 encodes a key multifunctional cytochrome P450 monooxygenase for four consecutive oxygenation steps in trichothecene biosynthesis. Biochem Biophys Res Commun. 353: 412–417.
  • Waalwijk C, van der Lee T, de Vries I, Hesselink T, Arts J, Kema GHJ. (2004). Synteny in toxigenic Fusarium species: the fumonisin gene cluster and the mating type region as examples. Eur J Plant Pathol. 110: 533–544.
  • Ward TJ, Bielawski JP, Kistler HC, Sullivan E, O’Donnell K. (2002). Ancestral polymorphism and adaptive evolution in the trichothecene mycotoxin gene cluster of phytopathogenic Fusarium. Proc Natl Acad Sci U S A. 99: 9278–9283.
  • Ward TJ, Clear RM, Rooney AP, O’Donnell D, Gaba, D, Patrick S, Starkey DE, Gilbert J, Geiser DM, Nowicki TW. (2008). An adaptive evolutionary shift in Fusarium head blight pathogen populations is driving the rapid spead of more toxigenic Fusarium graminearum in North America. Fungal Genet Biol. 45: 473–484.
  • Windels C. (2000). Economic and social impacts of Fusarium head blight: changing farms and rural communities in the northern Great Plains. Phytopathology. 90: 17–21.
  • Xu J-R, Leslie JF. (1996). A genetic map of Gibberella fujikuroi mating population A (Fusarium moniliforme). Genetics. 143: 175–189.
  • Yi H, Bojja RS, Fu J, Du L. (2005). Direct evidence for the function of FUM13 in 3-ketoreduction of mycotoxin fumonisins in Fusarium verticillioides. J Agric Food Chem. 53: 5456–5460.
  • Yoder OC, Valent, B Chumley F. (1986). Genetic nomenclature and practice for plant pathogenic fungi. Phytopathology. 76: 383–385.
  • Yu F, Zhu X, Du L. (2005). Developing a genetic system for functional manipulations of FUM1, a polyketide synthase gene for the biosynthesis of fumonisins in Fusarium verticillioides. FEMS Microbiol Lett. 248: 257–264.
  • Zaleta-Rivera K, Xu C, Yu F, Butchko RAE, Proctor RH, Hidalgo-Lara ME, Raza A, Dussault PH, Du L. (2006). A bi-domain non-ribosomal peptide synthetase encoded by FUM14 catalyzes the formation of tricarballylic esters in the biosynthesis of fumonisins. Biochemistry. 45: 2561–2569.
  • Zamir LO, Devor KA, Morin N, Sauriol F. (1991). Biosynthesis of trichothecenes: oxygenation steps post-trichodiene. J Chem Soc Chem Commun. 1991: 1033–1034.
  • Zamir LO, Devor KA, Nikolakakis A, Sauriol F. (1990). Biosynthesis of Fusarium culmorum trichothecenes: the roles of isotrichodermin and 12,13-epoxytrichothec-9-ene. J Biol Chem. 265: 6713–6725.
  • Zamir LO, Nikolakakis A, Huang L, St-Pierre P, Sauriol F, Sparace S, Mamer O. (1999). Biosynthesis of 3-acetyldeoxynivalenol and sambucinol: identification of the two oxygenation steps after trichodiene. J Biol Chem. 274: 12269–12277.
  • Zhu X, Yu F, Li X-C, Du L. (2007). Production of dihydroisocourmarins in Fusarium verticillioides by swapping ketosynthase domain of the fungal iterative polyketide synthase Fum1p with that of lovastatin diketide synthase. J Am Chem Soc. 129: 36–37.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.