404
Views
38
CrossRef citations to date
0
Altmetric
Review Article

Toxin synergism in snake venoms

Pages 165-170 | Received 20 Jun 2016, Accepted 01 Aug 2016, Published online: 22 Aug 2016

References

  • Aird SD. (2002). Ophidian envenomation strategies and the role of purines. Toxicon 40:335–93
  • Banerjee Y, Mizuguchi J, Iwanaga S, Kini RM. (2005). Hemextin AB complex, a unique anticoagulant protein complex from Hemachatus haemachatus (African Ringhals cobra) venom that inhibits clot initiation and factor VIIa activity. J Biol Chem 280:42601–11
  • Barlow A, Pook CE, Harrison RA, Wüster W. (2009). Coevolution of diet and prey-specific venom activity supports the role of selection in snake venom evolution. Proc Biol Sci 276:2443–9
  • Bohlen CJ, Chesler AT, Sharif-Naeini R, et al. (2011). A heteromeric Texas coral snake toxin targets acid-sensing ion channels to produce pain. Nature 479:410–14
  • Bon C, Bouchier C, Choumet V, et al. (1988). Crotoxin, half-century of investigations on a phospholipase A2 neurotoxin. Acta Physiol Pharmacol Latinoam 39:439–48
  • Bon C, Changeaux JP, Jeng TW, Fraenkel-Conrat H. (1979). Postsynaptic effects of crotoxin and of its isolated subunits. Eur J Biochem 99:471–82
  • Bordon KC, Perino MG, Giglio JR, Arantes EC. (2012). Isolation, enzymatic characterization and antiedematogenic activity of the first reported rattlesnake hyaluronidase from Crotalus durissus terrificus venom. Biochimie 94:2740–8
  • Brgles M, Kurtović T, Kovačič L, et al. (2014). Identification of proteins interacting with ammodytoxins in Vipera ammodytes ammodytes venom by immuno-affinity chromatography. Anal Bioanal Chem 406:293–304
  • Calvete JJ, Lomonte B. (2015). A bright future for integrative venomics. Toxicon 107:159–62
  • Carmo AO, Chatzaki M, Horta CC, et al. (2015). Evolution of alternative methodologies of scorpion antivenoms production. Toxicon 97:64–74
  • Chaim-Matyas A, Borkow G, Ovadia M. (1995). Synergism between cytotoxin P4 from the snake venom of Naja nigricollis nigricollis and various phospholipases. Comp Biochem Physiol B Biochem Mol Biol 110:83–9
  • Chan TK, Geren CR, Howell DE, Odell GV. (1975). Adenosine triphosphate in tarantula spider venoms and its synergistic effect with the venom toxin. Toxicon 13:61–6
  • Chavanayarn C, Thanongsaksrikul J, Thueng-In K, et al. (2012). Humanized-single domain antibodies (VH/VHH) that bound specifically to Naja kaouthia phospholipase A2 and neutralized the enzymatic activity. Toxins 4:554–67
  • Chen HS, Wang YM, Huang WT, et al. (2012). Cloning, characterization and mutagenesis of Russell’s viper venom l-amino acid oxidase: insights into its catalytic mechanism. Biochimie 94:335–44
  • Choumet V, Lafaye P, Demangel C, et al. (1999). Molecular mimicry between a monoclonal antibody and one subunit of crotoxin, a heterodimeric phospholipase A2 neurotoxin. Biol Chem 380:561–8
  • Cintra-Francischinelli M, Pizzo P, Rodrigues-Simioni L, et al. (2009). Calcium imaging of muscle cells treated with snake myotoxins reveals toxin synergism and presence of acceptors. Cell Mol Life Sci 66:1718–28
  • Condrea E. (1974). Membrane-active polypeptides from snake venom: cardiotoxins and haemocytotoxins. Experientia 30:121–9
  • Doley R, Kini RM. (2009). Protein complexes in snake venom. Cell Mol Life Sci 66:2851–71
  • Endean R. (1987). Separation of two myotoxins from nematocysts of the box jellyfish (Chironex fleckeri). Toxicon 25:483–92
  • Faure G, Bon C. (1988). Crotoxin, a phospholipase A2 neurotoxin from the South American rattlesnake Crotalus durissus terrificus: purification of several isoforms and comparison of their molecular structure and of their biological activities. Biochemistry 27:730–8
  • Fohlman J, Eaker D, Karlsson E, Thesleff S. (1976). Taipoxin, an extremely potent presynaptic neurotoxin from the venom of the Australian snake taipan (Oxyuranus s. scutellatus). Eur J Biochem 68:457–69
  • Gasanov SE, Alsarraj MA, Gasanov NE, Rael ED. (1997). Cobra venom cytotoxin free of phospholipase A2 and its effect on model membranes and T leukemia cells. J Membr Biol 155:133–42
  • Gasanov SE, Dagda RK, Rael ED. (2014). Snake venom cytotoxins, phospholipase A2s, and Zn2+-dependent metalloproteinases: mechanisms of action and pharmacological relevance. J Clin Toxicol 4:1000181
  • Goyffon M, Tournier JN. (2014). Scorpions: a presentation. Toxins 6:2137–48
  • Herrera M, Fernández J, Vargas M, et al. (2012). Comparative proteomic analysis of the venom of the taipan snake, Oxyuranus scutellatus, from Papua New Guinea and Australia: role of neurotoxic and procoagulant effects in venom toxicity. J Proteomics 75:2128–40
  • Joubert FJ, Taljaard N. (1979). Snake venoms: the amino-acid sequence of protein S2C4 from Dendroaspis jamesoni kaimosae (Jameson’s mamba) venom. Hoppe Seylers Z Physiol Chem 360:1–580
  • Kemparaju K, Girish KS. (2006). Snake venom hyaluronidase: a therapeutic target. Cell Biochem Funct 24:7–12
  • King GF. (2011). Venoms as a platform for human drugs: translating toxins into therapeutics. Expert Opin Biol Ther 11:1469–84
  • Kini RM, Rao VS, Joseph JS. (2001). Procoagulant proteins from snake venoms. Haemostasis 31:218–24
  • Kini RM. (2005). The intriguing world of prothrombin activators from snake venom. Toxicon 45:1133–45
  • Kini RM. (2006). Anticoagulant proteins from snake venoms: structure, function and mechanism. Biochem J 397:377–87
  • Kini RM. (2011). Toxins in thrombosis and haemostasis: potential beyond imagination. J Thromb Haemost 9:195–208
  • Lauridsen LP, Laustsen AH, Lomonte B, Gutiérrez JM. (2016). Toxicovenomics and antivenom profiling of the Eastern green mamba snake (Dendroaspis angusticeps). J Proteomics 136:248–61
  • Laustsen AH, Engmark M, Milbo C, et al. (2016). From fangs to pharmacology: the future of snakebite envenoming therapy. Curr Pharm Design. 22. [Epub ahead of print]. doi: 10.2174/1381612822666160623073438
  • Laustsen AH, Solà M, Jappe EC, et al. (2016). Biotechnological trends in spider and scorpion antivenom development. Toxins 8:1–33
  • Laustsen AH, Lomonte B, Lohse B, et al. (2015a). Unveiling the nature of black mamba (Dendroaspis polylepis) venom through venomics and antivenom immunoprofiling: identification of key toxin targets for antivenom development. J Proteomics 119:126–42
  • Laustsen AH, Gutiérrez JM, Lohse B, et al. (2015b). Snake venomics of monocled cobra (Naja kaouthia) and investigation of human IgG response against venom toxins. Toxicon 99:23–35
  • Laustsen AH, Lohse B, Lomonte B, et al. (2015c). Selecting key toxins for focused development of elapid snake antivenoms and inhibitors guided by a toxicity score. Toxicon 104:43–5
  • Laustsen AH, Gutiérrez JM, Rasmussen AR, et al. (2015d). Danger in the reef: proteome, toxicity, and neutralization of the venom of the olive sea snake, Aipysurus laevis. Toxicon 107:187–96
  • Lazarovici P, Menashe M, Zlotkin E. (1984). Toxicity to crustacea due to polypeptide-phospholipase interaction in the venom of a chactoid scorpion. Arch Biochem Biophys 229:270–86
  • Montecucco C, Rossetto O. (2008). On the quaternary structure of taipoxin and textilotoxin: the advantage of being multiple. Toxicon 51:1560–2
  • Mora-Obando D, Fernandez J, Montecucco C, et al. (2014). Synergism between basic Asp49 and Lys49 phospholipase A2 myotoxins of viperid snake venom in vitro and in vivo. PLoS One 9:e109846
  • Morgenstern D, King GF. (2013). The venom optimization hypothesis revisited. Toxicon 63:120–8
  • Olivera BM, Teichert RW. (2011). Chemical ecology of pain. Nature 479:306–7
  • Pearson JA, Tyler MI, Retson KV, Howden ME. (1991). Studies on the subunit structure of textilotoxin, a potent presynaptic neurotoxin from the venom of the Australian common brown snake (Pseudonaja textilis). 2. The amino acid sequence and toxicity studies of subunit D. Biochim Biophys Acta 1077:147–50
  • Possani LD, Martin BM, Yatani A, et al. (1992). Isolation and physiological characterization of taicatoxin, a complex toxin with specific effects on calcium channels. Toxicon 30:1343–64
  • Rao VS, Kini RM. (2002). Pseutarin C, a prothrombin activator from Pseudonaja textilis venom: its structural and functional similarity to mammalian coagulation factor Xa-Va complex. Thromb Haemost 88:611–19
  • Richard G, Meyers AJ, McLean MD, et al. (2013). In vivo neutralization of α-cobratoxin with high-affinity llama single-domain antibodies (VHHs) and a VHH-Fc antibody. PLoS One 8:e69495
  • Rigoni M, Caccin P, Gschmeissner S, et al. (2005). Equivalent effects of snake PLA2 neurotoxins and lysophospholipid-fatty acid mixtures. Science 310:1678–80
  • Roncolato EC, Campos LB, Pessenda G, et al. (2015). Phage display as a novel promising antivenom therapy: a review. Toxicon 93:79–84
  • Sannaningaiah D, Subbaiah GK, Kempaiah K. (2014). Pharmacology of spider venom toxins. Toxin Rev 33:206–20
  • Strydom DJ. (1976). Snake venom toxins. Eur J Biochem 69:169–76
  • Strydom DJ, Botes DP. (1970). Snake venom toxins – I. Preliminary studies on the separation of toxins of elapidae venoms. Toxicon 8:203–9
  • Tan KY, Tan CH, Fung SY, Tan NH. (2015). Venomics, lethality and neutralization of Naja kaouthia (monocled cobra) venoms from three different geographical regions of Southeast Asia. J Proteomics 120:105–25
  • Undheim EA, Jones A, Clauser KR, et al. (2014). Clawing through evolution: toxin diversification and convergence in the ancient lineage Chilopoda (Centipedes). Mol Biol Evol 31:2124–48
  • Viljoen CC, Botes DP. (1973). Snake venom toxins the purification and amino acid sequence of toxin FVII from Dendroaspis angusticeps venom. J Biol Chem 248:4915–19
  • Wei WL, Sun JJ, Chen JS. (1996). Synergism of procoagulation effect of thrombin-like enzymes from Dienagkistrodon acutus and Agkistrodon halys snake venoms. Zhongguo Yao Li Xue Bao 17:527–31
  • Wullschleger B, Nentwig W, Kuhn-Nentwig L. (2005). Spider venom: enhancement of venom efficacy mediated by different synergistic strategies in Cupiennius salei. J Exp Biol 208:2115–21

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.