46
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Comparative toxicological characterization of venoms of Cerastes cerastes and Macrovipera mauritanica from Morocco and neutralization by monospecific antivenoms

, , , , , , & show all
Pages 382-396 | Received 26 Feb 2018, Accepted 21 Oct 2018, Published online: 23 Nov 2018

References

  • Abu-Sinna, G., et al., 1992. The effect of Cerastes cerastes cerastes venom on aldolase, lactate dehydrogenase and isocitrate dehydrogenase activities of the serum and tissues of the white rat. Proceedings of the zoological society of the Arab Republic Egypt, 23, 25–27.
  • Al-Asmari, A.K., 2003a. Pharmacological characterization of the rat's paw oedema induced by Echis coloratus venom. OnLine journal of biological sciences, 3, 309–319.
  • Al-Asmari, A.K., 2003b. Pharmacological characterizations of the rat paw edema induced by Echis pyramidum venom. OnLine journal of biological sciences, 3, 824–833.
  • Al-Asmari, A.K., and Abdo, N.M., 2006. Pharmacological characterization of rat paw edema induced by Cerastes gasperettii (cerastes) venom. Journal of venomous animals and toxins including tropical diseases, 12, 400–417.
  • Al-Sadoon, M.K., et al., 2013. Hepatic and renal tissue damages induced by Cerastes cerastes gasperetti crude venom. Life science journal, 10 (4), 191–197.
  • Archundia, I.G., et al., 2011. Neutralization of Vipera and Macrovipera venoms by two experimental polyvalent antisera: a study of paraspecificity. Toxicon, 57, 1049–1056.
  • Argaz, H., et al., 2013. Venomous snakes in Morocco: biogeography and envenomation serpents venimeux du Maroc: biogéographie et envenimation. Sciencelib edition mersenne, 5, 1–14.
  • Borja, M., et al., 2013. Intra-specific variation in the protein composition and proteolytic activity of venom of Crotalus lepidus morulus from the Northeast of Mexico. Copeia, 2013, 707–716.
  • Boukhalfa-Abib, H., et al., 2009. Purification and biochemical characterization of a novel hemorrhagic metalloproteinase from horned viper (Cerastes cerastes) venom. Comparative biochemistry and physiology part C: toxicology & pharmacology, 150, 285–290.
  • Boukhalfa-Abib, H. and Laraba-Djebari, F., 2012. The P–I metalloproteinase from Cerastes cerastes snake venom inhibits human platelet aggregation. Toxicon, 60, 132–175.
  • Bustillo, S., et al., 2012. Synergism between baltergin metalloproteinase and Ba SPII RP4 PLA2 from Bothrops alternatus venom on skeletal muscle (C2C12) cells. Toxicon, 59, 338–343.
  • Calvete, J.J., 2010. Antivenomics and venom phenotyping: a marriage of convenience to address the performance and range of clinical use of antivenoms. Toxicon, 56, 1284–1291.
  • Calvete, J.J., et al., 2009. Venoms, venomics, antivenomics. FEBS letters, 583, 1736–1743.
  • Chani, M., et al., 2008. Three case-reports of viperin envenoming in Morocco. Annales françaises d'anesthésie et de réanimation, 27, 330–334.
  • Chaou, N., Cherifi, F., and Laraba-Djebari, F., 2006. Action de l'immunothérapie antivenimeuse sur les désordres hépatique induits par une envenimation vipérine. In: Toxines et cancer, Eds. Françoise Goudey-Perriére, Evelyne Benoit, Max Goyffon, Pascale Marchot, Librairie Lavoisier, Cachan, 323–326.
  • Chérifi, F., and Laraba-Djebari, F., 2013. Isolated biomolecules of pharmacological interest in hemostasis from Cerastes cerastes venom. Journal of venomous animals and toxins including tropical diseases, 19, 11.
  • Chippaux, J.P., 2011. Estimate of the burden of snakebites in sub-Saharan Africa: a meta- analytic approach. Toxicon, 57, 586–599.
  • Da Silva, I.R.F., et al., 2012. BJ-PI2, a non-hemorrhagic metalloproteinase from Bothrops jararaca snake venom. Biochimica et biophysica acta, 1820, 1809–1821.
  • De Roodt, A.R., et al., 1998. Cross-reactivity and heterologous neutralization of crotaline antivenoms used in Argentina. Toxicon, 36, 1025–1038.
  • De Roodt, A.R., et al., 2003. Hemorrhagic activity of Bothrops venoms determined by two different methods and relationship with proteolytic activity on gelatin and lethality. Toxicon, 41, 949–958.
  • De Roodt, A.R., et al., 2005. Toxicity of venoms from snakes of medical importance in Mexico. Gaceta medica de Mexico, 141, 13–21.
  • Doley, R., and Kini, R.M., 2009. Protein complexes in snake venom. Cellular and molecular life sciences, 66, 2851–2871.
  • Estevez, J., et al., 2008. Étude des venins des principaux serpents venimeux de Guyane française et de leur neutralisation. Bulletin de la société de pathologie exotique, 101, 353–359.
  • Fahmi, L., et al., 2012. Venomics and antivenomics profiles of North African Cerastes cerastes and C. vipera populations reveals a potentially important therapeutic weakness. Proteomics, 75, 2442–2453.
  • Fasman, D.G., 1992. Practical handbook of biochemistry and molecular biology. Ed. MA CRC Press: Boston.
  • Fernandez, J., et al., 2010. Isolation of an acidic phospholipase A(2) from the venom of the snake Bothrops asper of Costa Rica: biochemical and toxicological characterization. Biochimie, 92, 273–283.
  • Fox, J.W., and Serrano, S.M.T., 2005. Structural considerations of the snake venom metalloproteinases, key members of the M12 reprolysin family of metalloproteinases. Toxicon, 45, 969–985.
  • Gay, C., et al., 2013. Effect of monospecific antibodies against baltergin in myotoxicity induced by Bothrops alternatus venom from northeast of Argentina. Role of metalloproteinases in muscle damage. Toxicon, 63, 104–111.
  • Gutiérrez, J., et al., 1988. An alternative in vitro method for testing the potency of the polyvalent antivenom produced in Costa Rica. Toxicon, 26, 411–413.
  • Gutiérrez, J.M., et al., 1985. Neutralization of proteolytic and hemorrhagic activities of Costa Rican snake venom by a polyvalent antivenom. Toxicon, 23, 887–893.
  • Gutiérrez, J.M., et al., 1990. Standardization of assays for testing the neutralizing ability of antivenoms. Toxicon, 28, 1127–1129.
  • Gutiérrez, J.M., et al., 1996. Evaluation of the neutralizing ability of antivenoms for the treatment of snake bite envenoming in Central America. In: C. Bon and M. Goyffon, eds. Envenomings and their treatments. Lyon: Fondation Marcel Mérieux, 223–231.
  • Gutiérrez, J.M., et al., 2010a. Snakebite envenoming from a global perspective: towards an integrated approach. Toxicon, 56, 1223–1235.
  • Gutiérrez, J.M., and Lomonte, B., 2013. Phospholipases A2: unveiling the secrets of a functionally versatile group of snake venom toxins. Toxicon, 62, 27–39.
  • Gutiérrez, J.M., Rucavado, A., and Escalante, T., 2010b. Snake venom metalloproteinases. Biological roles and participation in the pathophysiology of envenomation. In: S.P. Mackessy, ed. Handbook of venoms and toxins of reptiles. Boca Raton, FL: CRC Press, 115–138.
  • Gutierrez, J.M., et al., 1986. Comparative study of the edema-forming activity of Costa Rican snake venoms and its neutralization by a polyvalent antivenom. Comparative biochemistry and physiology, 85C, 171–175.
  • Hamza, L., et al., 2010a. Isolation and characterization of a myotoxin from the venom of Macrovipera lebetina transmediterranea. Toxicon, 56, 381–390.
  • Hamza, L., et al., 2010b. Purification and characterization of a fibrinogenolytic and hemorrhagic metalloproteinase isolated from Vipera lebetina venom. Biochimie, 92, 797–805.
  • Hasson, S.S., et al., 2012. Neutralisation of local haemorrhage induced by the saw-scaled viper Echis carinatus sochureki venom using ethanolic extract of Hibiscus aethiopicus L. Evidence-based complementary and alternative medicine, 2012, 540671.
  • Kasturiratne, A., et al., 2008. The global burden of snakebite: a literature analysis and modeling based on regional estimates of envenoming and deaths. PLoS medicine. 5, e218.
  • Khunsap, S., et al., 2011. Purification of a phospholipase A2 from Daboia russelii siamensis venom with anticancer effects. Journal of venom research, 2, 42–51.
  • Koh, D.C.I., et al., 2006. Snake venom components and their applications in biomedicine. Cellular and molecular life sciences, 63, 3030–3041.
  • Kondo, H., et al., 1960. Studies on the quantitative method for determination of hemorrhagic activity of habu snake venom. Japanese journal of medical science & biology, 13, 43–51.
  • Krifi, M.N., et al., 1998. Effect of some variables on the in vivo determination of scorpion and viper venom toxicities. Biologicals, 26(4), 277–288.
  • Kumar, R.V., et al., 2013. Malabarase, a serine protease with anticoagulant activity from Trimeresurus malabaricus venom. Comparative biochemistry and physiology part B: biochemistry and molecular biology, 164, 111–116.
  • Kurtović, T., et al., 2014. Paraspecificity of Vipera a. ammodytes-specific antivenom towards Montivipera raddei and Macrovipera lebetina obtusa venoms. Toxicon, 78, 103–112.
  • Laemmli, U.K., 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680–685.
  • Lago, N.R., et al., 2012. Local damage produced by Vipera and Macrovipera venoms and some immunochemical characteristics. Toxicon, 60, 227–255.
  • Lallie, H., et al., 2011. Epidémiologie des envenimations ophidiennes au Maroc. Médecine tropicale, 71, 267–271.
  • Lallie, H., et al., 2012. Les envenimations ophidiennes dans la région de Souss-Massa-Drâa au Maroc. Bulletin de la société de pathologie exotique, 105, 171–174.
  • Larréché, S., et al., 2010. Envenimations ophidiennes graves. Le praticien en anesthésie réanimation, 14, 254–263.
  • Lomonte, B., et al., 2003. An overview of lysine-49 phospholipase A2 myotoxins from crotalid snake venoms and their structural determinants of myotoxic action. Toxicon, 42, 885–901.
  • Lomonte, B., et al., 2008. Snake venomics and antivenomics of the arboreal neotropical pitvipers Bothriechis lateralis and Bothriechis schlegelii. Journal of proteome research, 7, 2445–2457.
  • Lowry, O.H., et al., 1951. Protein measurement with the Folin phenol reagent. Journal of biological chemistry, 193, 265–275.
  • Madrigal, M., et al., 2017. Cross-reactivity, antivenomics, and neutralization of toxic activities of Lachesis venoms by polyspecific and monospecific antivenoms. PLOS neglected tropical diseases, 11, e0005793.
  • Makran, B., et al., 2012. Snake venomics of Macrovipera mauritanica from Morocco, and assessment of the para-specific immunoreactivity of an experimental monospecific and a commercial antivenoms. Proteomics, 75, 2431–2441.
  • Markland, F.S., and Swenson, S., 2013. Snake venom metalloproteinases. Toxicon, 62, 3–18.
  • Menaldo, D.L., et al., 2012. Biochemical characterization and comparative analysis of two distinct serine proteases from Bothrops pirajai snake venom. Biochimie, 94, 2545–2558.
  • Mendes, et al., 2013. Triacontyl p-coumarate: an inhibitor of snake venom metalloproteinases. Phytochemistry, 86, 72–82.
  • Moura-da-Silva, A.M., and Baldo, C., 2012. Jararhagin, a hemorrhagic snake venom metalloproteinase from Bothrops jararaca. Toxicon, 60, 280–289.
  • Oliveira, A.K., et al., 2009. Simplified procedures for the isolation of HF3, bothropasin, disintegrin-like/cysteine-rich protein and a novel PI metalloproteinase from Bothrops jararaca venom. Toxicon, 53, 797–801.
  • Otero, R., et al., 1997. Neutralizing capacity of a new monovalent anti-Bothrops atrox antivenom: comparison with two commercial antivenoms. Brazilian journal of medical and biological research, 30, 375–379.
  • Ouchterlony, O., and Nilsson, L.A., 1978. Immunodiffusion and immunoelectrophoresis. In: D.M. Weir, ed. Handbook of experimental immunology. 3rd ed. Oxford: Blackwell Scientific Publication, 19.16–19.28.
  • Ownby, C.L., et al., 1990. Pathogenesis of hemorrhage induced by bilitoxin, a hemorrhagic toxin isolated from the venom of the common cantil (Agkistrodon bilineatus bilineatus). Toxicon, 28, 837–846.
  • Padlan, E.A., et al., 1989. Structure of an antibody-antigen complex: crystal structure of the HyHEL-10 Fab-lysozyme complex. Proceedings of the National Academy of Sciences, 86, 5938–5942.
  • Petras, D., et al., 2011. Snake venomics of African spitting cobras: toxin composition and assessment of congeneric cross-reactivity of the pan-African EchiTAb-Plus-ICP antivenom by antivenomics and neutralization approaches. Journal of proteome research, 10, 1266–1280.
  • Raw, I., et al., 1991. Antivenins in Brazil: preparation. In: A.T. Tu, ed. Handbook of natural toxins. Reptile venoms and toxins. New York, NY: Marcel Dekker, 557–581.
  • Sajevic, T., et al., 2013. VaH3, one of the principal hemorrhagins in Vipera ammodytes ammodytes venom, is a homodimeric P-IIIc metalloproteinase. Biochimie, 95, 1158–1170.
  • Sarray, S., et al., 2004. Lebectin, a novel C-type lectin from Macrovipera lebetina venom, inhibits integrin-mediated adhesion, migration and invasion of human tumour cells. Laboratory investigation, 84, 573–581.
  • Seifert, A.S., Armitage, O.J., and Corey, G.R., 2012. Chapter 113: venomous snake bites. In: R.L.F. Cecil, L. Goldman, and A.I. Schafer, eds. Goldman's Cecil medicine. New York, NY: Elsevier Health Sciences, E-Publishing Inc., 694–697.
  • Sousa, L.F., et al., 2013. Comparison of phylogeny, venom composition and neutralization by antivenom in diverse species of Bothrops complex. PLOS neglected tropical diseases, 7, e2442.
  • Takeda, S., et al., 2012. Snake venom metalloproteinases: structure, function and relevance to the mammalian ADAM/ADAMTS family proteins. Biochimica et biophysica acta, 1824, 164–176.
  • Theakston, R.D.G., et al., 2003. Report of a WHO workshop on the standardization and control of antivenoms. Toxicon, 41, 541–557.
  • Theakston, R.D.G., Reid, H.A., 1983. Development of simple standard assay procedures for the characterization of snake venoms. Bulletin of world health organization, 61, 949–956.
  • Vargas, L.J., et al., 2012. An acidic phospholipase A2 with antibacterial activity from Porthidium nasutum snake venom. Comparative biochemistry and physiology part B: biochemistry and molecular biology, 161, 341–347.
  • Venkatesh, M., and Gowda,V., 2013. Synergistically acting PLA2: peptide hemmorhagic complex from Daboia russelii venom. Toxicon, 73, 111–120.
  • Vishwanath, S.B., et al., 1987. Characterization of three edema-inducing phospholipase A2 enzymes from habu (Trimeresurus flavoviridis) venom and their interaction with the alkaloid aristolochic acid. Toxicon, 25, 501–515.
  • Wahby, A.F., et al., 2012. Role of hyaluronidase inhibitors in the neutralization of toxicity of Egyptian horned viper Cerastes cerastes venom. Journal of genetic engineering and biotechnology, 10, 213–219.
  • Warrel, D.A., 2010a. Guidelines for the management of snake-bites. Ed. World Health Organization, Regional Office for South-East Asia, World Health House, Indraprastha Estate, Mahatma Gandhi Marg, New Delhi-India, 152.
  • Warrell, D.A., 2010b. Snake bite. The lancet, 375, 77–88.
  • WHO, 1981. Progress in the characterization of venoms and standardization of antivenoms. WHO Offset Publication 58, 1–44.
  • WHO. 2010a. Guidelines for the production, control and regulation of snake antivenom immunoglobulins. Geneva: WHO.
  • WHO. 2010b. Guidelines for the prevention and clinical management of snakebite in Africa. Brazzaville: WHO Regional Office for Africa.
  • Yamakawa, M., Nozaki, M., and Hokama, Z., 1976. Fractionation of Sakishimahabu (Trimeresurus elegans) venom and lethal, hemorrhagic and edema-forming activities of the fractions. In: A. Ohsaka, K. Hayashi, and Y. Sawai, eds. Animal, plant and microbiol toxins. New York, NY: Plenum Press, 97–109.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.