494
Views
29
CrossRef citations to date
0
Altmetric
Articles

An Enhanced Finite Element Macro-Model for the Realistic Simulation of Localized Cracks in Masonry Structures: A Large-Scale Application

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon

References

  • Addessi, D., D. Liberatore, and R. Masiani. 2015. Force-based beam Finite Element (FE) for the pushover analysis of masonry buildings. International Journal of Architectural Heritage 9 (3): Taylor & Francis.231–43. doi:10.1080/15583058.2013.768309.
  • Bazant, Z., and B. Oh. 1983. Crack band theory for fracture of concrete. Materials and Structures 16:155–77. doi:10.1007/BF02486267.
  • Beyer, K., and A. Dazio. 2012. Quasi-static cyclic tests on masonry spandrels. Earthquake Spectra 28 (3): Earthquake Engineering Research Institute.907–29. doi:10.1193/1.4000063.
  • Block, P., and L. Lachauer. 2013. Three-dimensional (3D) equilibrium analysis of gothic masonry vaults. International Journal of Architectural Heritage 8 (3):312–35. doi:10.1080/15583058.2013.826301.
  • Brencich, A., L. Gambarotta, and S. Lagomarsino. 2000. Catania project: Research on the seismic response of two masonry buildings. Chapter 6: Analysis of a masonry building in via martoglio, 107–43. Rome, Italy: CNR Gruppo Nazionale per La Difesa Dei Terremoti.
  • Carvalho, J., J. Ortega, P. B. Lourenço, L. F. Ramos, and H. Roman. 2014. Safety analysis of modern heritage masonry buildings: Box-buildings in Recife, Brazil. Engineering Structures 80: Elsevier Ltd.222–40. doi:10.1016/j.engstruct.2014.09.004.
  • Castellazzi, G., A. M. D’Altri, S. De Miranda, and F. Ubertini. 2017. An innovative numerical modeling strategy for the structural analysis of historical monumental buildings. Engineering Structures 132: Elsevier Ltd.229–48. doi:10.1016/j.engstruct.2016.11.032.
  • Cervera, M.. 2003. Viscoelasticity and rate-dependent continuum damage models. Monography N-79, Technical Report, CIMNE, Barcelona, Spain.
  • Cervera, M., and M. Chiumenti. 2006. Smeared crack approach: Back to the original track. International Journal for Numerical and Analytical Methods in Geomechanics 30 (12):1173–99. doi:10.1002/nag.518.
  • Cervera, M., M. Chiumenti, and R. Codina. 2010. Mixed stabilized finite element methods in nonlinear solid mechanics. Part II: Strain localization. Computer Methods in Applied Mechanics and Engineering 199 (37–40): Elsevier B.V.2571–89. doi:10.1016/j.cma.2010.04.005.
  • Cervera, M., J. Oliver, and R. Faria. 1995. Seismic evaluation of concrete dams via continuum damage models. Earthquake Engineering & Structural Dynamics 24 (9):1225–45. http://onlinelibrary.wiley.com/doi/10.1002/eqe.4290240905/abstract
  • Cervera, M., L. Pelà, R. Clemente, and P. Roca. 2010. A crack-tracking technique for localized damage in quasi-brittle materials. Engineering Fracture Mechanics 77 (13): Elsevier Ltd.2431–50. doi:10.1016/j.engfracmech.2010.06.013.
  • Chaboche, J. L. 1988. Continuum damage mechanics: Part I—general concepts. Journal of Applied Mechanics 55 (1): American Society of Mechanical Engineers.59. doi:10.1115/1.3173661.
  • COMET. 2016. Coupled mechanical and thermal analysis. Barcelona, Spain. http://www.cimne.com/comet/
  • Faria, R., J. Oliver, and M. Cervera. 1998. A strain-based plastic viscous-damage model for massive concrete structures. International Journal of Solids and Structures 35 (14):1533–58. doi:10.1016/S0020-7683(97)00119-4.
  • Gambarotta, L., and S. Lagomarsino. 1997a. Damage models for the seismic response of brick masonry shear walls. Part I: The mortar joint model and its applications. Earthquake Engineering and Structural Dynamics 26 (4):423–39. http://www.scopus.com/inward/record.url?eid=2-s2.0-0031126521&partnerID=tZOtx3y1
  • Gambarotta, L., and S. Lagomarsino. 1997b. Damage models for the seismic response of brick masonry shear walls. Part I : The mortar joint models and its applications. Earthquake Engineering and Structural Dynamics 26 (March 1996):423–39. doi:10.1002/(SICI)1096-9845(199704)26:4<441::AID-EQE651>3.0.CO;2-0.
  • GiD. 2016. The personal pre and post-processor. Barcelona, Spain. http://www.gidhome.com/
  • Italian Ministry of Infrastructure and Transport. 2009. Circolare 2 febbraio 2009, n. 617 Istruzioni per l’applicazione delle “Nuove norme tecniche per le costruzioni” di cui al decreto ministeriale 14 gennaio 2008. Rome, Italy: Gazzetta Ufficiale.
  • Jäger, P., P. Steinmann, and E. Kuhl. 2008. Modeling three-dimensional crack propagation-a comparison of crack path tracking strategies. International Journal for Numerical Methods in Engineering 76 (9):1328–52. doi:10.1002/nme.2353.
  • Lagomarsino, S., A. Penna, A. Galasco, and S. Cattari. 2013. TREMURI program: An equivalent frame model for the nonlinear seismic analysis of masonry buildings. Engineering Structures 56: Elsevier Ltd.1787–99. doi:10.1016/j.engstruct.2013.08.002.
  • Lemos, J. V. 2007. Discrete element modeling of masonry structures. International Journal of Architectural Heritage 1 (2):190–213. doi:10.1080/15583050601176868.
  • Lourenço, P. B. 2002. Computations on historic masonry structures. Progress in Structural Engineering and Materials 4 (3):301–19. doi:10.1002/pse.120.
  • Lourenço, P. B., and J. G. Rots. 1997. Multisurface interface model for analysis of masonry structures. Journal of Engineering Mechanics 123 (7):660–68. doi:10.1061/(ASCE)0733-9399(1997)123:7(660).
  • Lubliner, J., J. Oliver, S. Oller, and E. Oñate. 1989. A plastic-damage model for concrete. International Journal of Solids and Structures 25 (3):299–326. doi:10.1016/0020-7683(89)90050-4.
  • Macorini, L., and B. A. Izzuddin. 2011. A non-linear interface element for 3D mesoscale analysis of brick-masonry structures. International Journal for Numerical Methods in Engineering 85 (12):1584–608. doi:10.1002/nme.3046.
  • Magenes, G., and G. M. Calvi. 1996. Prospettive per La Calibrazione Di Metodi Semplificati per L’analisi Sismica Di Pareti Murarie. In Atti Del Convegno Nazionale “La Meccanica Delle Murature Tra Teoria E Progetto, Messina, 18–20 settembre 1996, ed E. Pitagora. Messina, Italy.
  • McInerney, J., and M. DeJong. 2015. Discrete element modeling of groin vault displacement capacity. International Journal of Architectural Heritage 9 (8):1037–49. doi:10.1080/15583058.2014.923953.
  • Milani, G. 2013. Lesson learned after the Emilia-Romagna, Italy, 20–29 May 2012 earthquakes: A limit analysis insight on three masonry churches. Engineering Failure Analysis 34 (December): Elsevier Ltd.761–78. doi:10.1016/j.engfailanal.2013.01.001.
  • Milani, G., P. B. Lourenço, and A. Tralli. 2006. Homogenised limit analysis of masonry walls, Part II: Structural examples. Computers & Structures 84 (3–4):181–95. doi:10.1016/j.compstruc.2005.09.004.
  • Molins, C., and P. Roca. 1998. Capacity of masonry arches and spatial frames. Journal of Structural Engineering 124 (6):653–63. doi:10.1061/(ASCE)0733-9445(1998)124:6(653).
  • Page, A. W. 1979. A model for the in-plane behaviour of masonry and a sensitivity analysis of its criticai parameters. 5th International Brick Masonry Conference, Washington, DC, 262–67.
  • Page, A. W. 1978. Finite element model for masonry. Journal of the Structural Division 104 (8): ASCE.1267–85. 1979. “A Model for the In-Plane Behaviour of Masonry and a Sensitivity Analysis of Its CriticaI Parameters.” In 5th International Brick Masonry Conference, 262–67.
  • Papa, E. 1996. A unilateral damage model for masonry based on a homogenisation procedure. Mechanics of Cohesive-Frictional Materias 1 (4):349–66. doi:10.1002/(ISSN)1099-1484.
  • Papastamatiou, D., and L. Psycharis. 1993. Seismic response of classical monuments-a numerical perspective developed at the temple of Apollo in Bassae, Greece. Terra Nova 5 (6):591–601. doi:10.1111/j.1365-3121.1993.tb00309.x.
  • Parisi, F., and N. Augenti. 2013. Seismic capacity of irregular unreinforced masonry walls with openings. Earthquake Engineering & Structural Dynamics 42 (1):101–21. doi:10.1002/eqe.2195.
  • Parisi, F., N. Augenti, and A. Prota. 2014. Implications of the spandrel type on the lateral behavior of unreinforced masonry walls. Earthquake Engineering & Structural Dynamics 43 (12):1867–87. doi:10.1002/eqe.2441.
  • Pelà, L., J. Bourgeois, P. Roca, M. Cervera, and M. Chiumenti. 2014a. Analysis of the effect of provisional ties on the construction and current deformation of mallorca cathedral. International Journal of Architectural Heritage in press Taylor & Francis. doi:10.1080/15583058.2014.996920.
  • Pelà, L., M. Cervera, S. Oller, and M. Chiumenti. 2014b. A localized mapped damage model for orthotropic materials. Engineering Fracture Mechanics 124–125:196–216. doi:10.1016/j.engfracmech.2014.04.027.
  • Pelà, L., M. Cervera, and P. Roca. 2011. Continuum damage model for orthotropic materials: Application to masonry. Computer Methods in Applied Mechanics and Engineering 200 (9–12):917–30. doi:10.1016/j.cma.2010.11.010.
  • Petracca, M., L. Pelà, R. Rossi, S. Oller, G. Camata, and E. Spacone. 2015. Regularization of first order computational homogenization for multiscale analysis of masonry structures. Computational Mechanics December. doi:10.1007/s00466-015-1230-6.
  • Petracca, M., L. Pelà, R. Rossi, S. Oller, G. Camata, and E. Spacone. 2017. Multiscale computational first order homogenization of thick shells for the analysis of out-of-plane loaded masonry walls. Computer Methods in Applied Mechanics and Engineering 315:273–301. doi:10.1016/j.cma.2016.10.046.
  • Petromichelakis, Y., S. Saloustros, and L. Pelà. 2014. Seismic assessment of historical masonry construction including uncertainty. In Proceedings of EuroDyn 2014, ed Á. Cunha, E. Caetano, P. Ribeiro, C. Papadimitriou, C. Moutinho, and F. Magalhães, 297–304, 9th International Conference on Structural Dynamics, EURODYN 2014; Porto; Portugal, 30 June 2014 through 2 July.
  • Rabczuk, T. 2012. Computational methods for fracture in brittle and quasi-brittle solids: State-of-the-art review and future perspectives. ISRN Applied Mathematics 2013:1–38. doi:10.1155/2013/849231.
  • Roca, P., M. Cervera, G. Gariup, and L. Pelà. 2010. Structural analysis of masonry historical constructions. Classical and advanced approaches. Archives of Computational Methods in Engineering 17 (3):299–325. doi:10.1007/s11831-010-9046-1.
  • Roca, P., M. Cervera, L. Pelà, R. Clemente, and M. Chiumenti. 2013. Continuum FE models for the analysis of mallorca cathedral. Engineering Structures 46: Elsevier Ltd.653–70. doi:10.1016/j.engstruct.2012.08.005.
  • Saloustros, S., L. Pelà, and M. Cervera. 2015. A crack-tracking technique for localized cohesive-frictional damage. Engineering Fracture Mechanics 150:96–114. doi:10.1016/j.engfracmech.2015.10.039.
  • Saloustros, S., L. Pelà, M. Cervera, and P. Roca. 2016a. A macro-modelling finite element technique for the realistic simulation of cracking in masonry structures. Structural Analysis of Historical Constructions - Anamnesis, Diagnosis, Therapy, Controls 2010:284–90.
  • Saloustros, S., L. Pelà, M. Cervera, and P. Roca. 2016b. Finite element modelling of internal and multiple localized cracks. Computational Mechanics. Springer Berlin Heidelberg. doi:10.1007/s00466-016-1351-6.
  • Saloustros, S., L. Pelà, P. Roca, and J. Portal. 2014. Numerical analysis of structural damage in the church of the poblet monastery. Engineering Failure Analysis 48: Elsevier Ltd. 41–61. doi:10.1016/j.engfailanal.2014.10.015.
  • Sarhosis, V., and Y. Sheng. 2014. Identification of material parameters for low bond strength masonry. Engineering Structures 60: Elsevier Ltd. 100–10. doi:10.1016/j.engstruct.2013.12.013.
  • Slobbe, A. T., M. A. N. Hendriks, and J. G. Rots. 2014. Smoothing the propagation of smeared cracks. Engineering Fracture Mechanics 132 (December): Elsevier Ltd. 147–68. doi:10.1016/j.engfracmech.2014.10.020.
  • Theodossopoulos, D., and B. Sinha. 2013. A review of analytical methods in the current design processes and assessment of performance of masonry structures. Construction and Building Materials 41:990–1001. doi:10.1016/j.conbuildmat.2012.07.095.
  • Trovalusci, P., and R. Masiani. 2003. Non-linear micropolar and classical continua for anisotropic discontinous materials. International Journal of Solids and Structures 40 (5):1281–97. doi:10.1016/S0020-7683(02)00584-X.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.