Publication Cover
International Journal of Architectural Heritage
Conservation, Analysis, and Restoration
Volume 15, 2021 - Issue 3
278
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Fragility Functions for Tall URM Buildings around Early 20th Century in Lisbon. Part 1: Methodology and Application at Building Level

ORCID Icon, ORCID Icon, ORCID Icon, & ORCID Icon
Pages 349-372 | Received 04 Feb 2019, Accepted 10 May 2019, Published online: 26 May 2019

References

  • Appleton, J. G. 2005. Reabilitação de Edifícios “Gaioleiros”. 1st ed. Lisboa: Edições Orion (In Portuguese).
  • Beyer, K., and S. Mangalathu. 2014. Numerical study on the peak strength of masonry spandrels with arches. Journal of Earthquake Engineering 18:169–86. doi:10.1080/13632469.2013.851047.
  • Bracchi, S., M. Rota, Magenes G, and A. Penna. 2016. Seismic assessment of masonry buildings accounting for limited knowledge on materials by Bayesian updating. Bulletin of Earthquake Engineering 14 (8):2273–97. doi:10.1007/s10518-016-9905-8.
  • Calderini, C., S. Cattari, and S. Lagomarsino. 2009. In-plane strength of unreinforced masonry piers. Earthquake Engineering and Structural Dynamics 38:243–67. doi:10.1002/eqe.
  • Candeias, P. 2008. Avaliação da vulnerabilidade sísmica de edifícios de alvenaria. PhD Thesis. Universidade do Minho. Guimarães (In Portuguese).
  • Cattari, S., and S. Lagomarsino. 2013a. Masonry structures. In Developments in the field of displacement based seismic assessment, ed. T. Sullivan, and G. M. Calvi, 524. IUSS Press (PAVIA) and EUCENTRE. ISBN: 978-88-6198-090-7.
  • Cattari, S., and S. Lagomarsino. 2008. A strength criterion for the flexural behaviour of spandrels in un-reinforced masonry walls. Proceedings of the 14th Earthquake Conference on Earthquake Engineering, Beijing.
  • Cattari, S., and S. Lagomarsino. 2013b. Seismic assessment of mixed masonry-reinforced concrete buildings by non-linear static analyses. Earthquake and Structures 4 (3):241–64. doi:10.12989/eas.2013.4.3.241.
  • Cattari, S., S. Lagomarsino, and S. Marino. 2015. Reliability of nonlinear static analysis in case of irregular urm buildings with flexible diaphragms. SECED 2015 Conference: Earthquake Risk and Engineering towards a Resilient World, Cambridge, UK.
  • CEN. 2004. Eurocode 8: Design of structures for earthquake resistance. Part 1: General rules, seismic actions and rules for buildings Eurocode, EN 1998-1. European Committee for Standardization (CEN), Brussels.
  • D’Ayala, D., and S. Paganoni. 2011. Assessment and analysis of damage in L’Aquila historic city centre after 6th April 2009. Bulletin of Earthquake Engineering 9 (1):81–104. doi:10.1007/s10518-010-9224-4.
  • Degli Abbati, S. 2016. Seismic Assessment of Single-Block Rocking Elements in Masonry Structures. PhD Thesis. Università Degli Studi de Genova. Genova.
  • Degli Abbati, S., S. Cattari, I. Marassi, and S. Lagomarsino. 2014. Seismic out-of-plane assessment of Podestaà Palace in Mantua (Italy). Key Engineering Materials 624:88–96. doi:10.4028/www.scientific.net/KEM.624.88.
  • Degli Abbati, S., S. Cattari, and S. Lagomarsino. 2018. Theoretically-based and practice-oriented formulations for the floor spectra evaluation. Earthquake and Structures 15 (5):565–581. doi:10.12989/eas.2018.15.5.565.
  • Degli Abbati, S., and S. Lagomarsino. 2017. Out-of-plane static and dynamic response of masonry panels. Engineering Structures 150:803–20. doi:10.1016/j.engstruct.2017.07.070.
  • Doherty, K., M. C. Griffith, N. Lam, and J. Wilson. 2002. Displacement-based seismic analysis for out-of-plane bending of unreinforced masonry walls. Earthquake Engineering and Structural Dynamics 31 (4):833–50. doi:10.1002/eqe.126.
  • Douglas, J., D. M. Seyedi, T. Ulrich, H. Modaressi, E. Foerster, K. Pitilakis, D. Pitilakis, A. Karatzetzou, G. Gazetas, E. Garini, et al. 2015. Evaluation of seismic hazard for the assessment of historical elements at risk: Description of input and selection of intensity measures. Bulletin of Earthquake Engineering 13 (1):49–65. doi:10.1007/s10518-014-9606-0.
  • Endo, Y., L. Pelà, and P. Roca. 2017. Review of different pushover analysis methods applied to masonry buildings and comparison with nonlinear dynamic analysis. Journal of Earthquake Engineering 21 (8):1234–55. doi:10.1080/13632469.2016.1210055.
  • Erberik, M. A. 2008. Generation of fragility curves for Turkish masonry buildings considering in-plane failure modes. Earthquake Engineering & Structural Dynamics 37 (3):387–405. doi:10.1002/eqe.760.
  • Fajfar, P. 2000. A nonlinear analysis method for performance-based seismic design. Earthquake Engineering and Structural Dynamics 16 (3):573–92. doi:10.1193/1.1586128.
  • Farinha, J., and A. Reis. 1993. Tabelas Técnicas. 2nd ed. Setúbal: Edição P.O.B. (In Portuguese).
  • Ferreira, V., and J. Farinha. 1974. Tabelas Técnicas para Engenharia civil. 7th ed. Lisboa: Técnica. Associação de Estudantes do Instituto Superior Técnico (In Portuguese).
  • Franchin, P., and T. Pagnoni. 2018. A general model of resistance partial factors for seismic assessment and retrofit. 16th European Conference on Earthquake Engineering, Thessaloniki.
  • Giongo, I., D. Dizhur, R. Tomasi, and J. M. Ingham. 2013. In-plane assessment of existing timber diaphragms in URM buildings via quasi-static and dynamic in situ tests. Advanced Materials Research 778:495–502. doi:10.4028/www.scientific.net/AMR.778.495.
  • Griffith, M. C., N. T. K. Lam, J. L. Wilson, and K. Doherty. 2004. Experimental investigation of unreinforced brick masonry walls in flexure. Journal of Structural Engineering 130 (3):423–32. doi:10.1061/(ASCE)0733-9445(2004)130:3(423).
  • Grünthal, G. 1998. European Macroseismic Scale 1998: EMS-98. Chaiers Du Centre Européen de Géodynamique et de Séismologie, Luzembourg.
  • Haddad, J., S. Cattari, and S. Lagomarsino. 2017 The use of sensitivity analysis for the probabilistic-based seismic assessment of existing buildings. 16th World Conference on Earthquake Engineering, Santiago Chile.
  • Housner, G. W. 1963. The behavior of inverted pendulum structures during earthquakes. Bulletin of the Seismological Society of America 53 (2):403–17.
  • IPQ. 2010. Eurocódigo 8 - Projecto de estruturas para resistência aos sismos. Parte 1: Regras gerais, acções sísmicas e regras para edifícios, NP EN 1998-1:2010, Instituto Português Da Qualidade (IPQ), Caparica (In Portuguese).
  • IPQ. 2017. Eurocódigo 8 – Projeto de estruturas para resistência aos sismos Parte 3: Avaliação e reabilitação de edifícios. NP EN 1998-3:2017, Instituto Português Da Qualidade (IPQ), Caparica (In Portuguese).
  • JCSS, Joint Committee on Structural Safety. 2011. Probabilistic model code. Part 3: Resistance Models. 3.2. Masonry Properties. ISBN 978-3-909386-79-6.
  • Kržan, M., S. Gostič, S. Cattari, and V. Bosiljkov. 2015. Acquiring reference parameters of masonry for the structural performance analysis of historical buildings. Bulletin of Earthquake Engineering 13 (1):203–36. doi:10.1007/s10518-014-9686-x.
  • Lagomarsino, S., and S. Cattari. 2014. Fragility functions of masonry buildings. In SYNER-G: typology definition and fragility functions for physical elements at seismic risk, buildings, lifelines, transportation networks and critical facilities, geotechnical, geological and earthquake engineering, ed. K. Pitilakis, H. Crowley, and A. Kaynia, Vol. 27, 111–156. Dordrecht: Springer Netherlands. doi:10.1007/978-94-007-7872-6_5.
  • Lagomarsino, S. 2015. Seismic assessment of rocking masonry structures. Bulletin of Earthquake Engineering 13 (1):97–128. doi:10.1007/s10518-014-9609-x.
  • Lagomarsino, S., and S. Cattari. 2015. Seismic performance of historical masonry structures through pushover and nonlinear dynamic analyses. In Perspectives on European earthquake engineering and seismology, geotechnical, geological and earthquake engineering, ed. A. Ansal, Vol. 39, 265–292. Cham: Springer International Publishing. doi:10.1007/978-3-319-16964-4.
  • Lagomarsino, S., A. Penna, A. Galasco, and Cattari. 2013. S. TREMURI program: An equivalent frame model for the nonlinear seismic analysis of masonry buildings. Engineering Structures 56:1787–99. doi:10.1016/j.engstruct.2013.08.002.
  • Lagomarsino, S., A. Penna, A. Galasco, and S. Cattari. 2012. TREMURI program: seismic analyses of 3D masonry buildings. Genoa: University of Genoa.
  • Liel, A. B., C. B. Haselton, G. G. Deierlein, and J. W. Baker. 2009. Incorporating modelling uncertainties in the assessment of seismic collapse risk of buildings. Structural Safety 31:197–211. doi:10.1016/j.strusafe.2008.06.002.
  • Lourenço, P. B., N. Mendes, L. F. Ramos, and D. V. Oliveira. 2011. Analysis of masonry structures without box behavior. International Journal of Architectural Heritage 5:369–82. doi:10.1080/15583058.2010.528824.
  • Macedo, L., and J. M. Castro. 2017. SelEQ: An advanced ground motion record selection and scaling framework. Advances in Engineering Software 114:32–47. doi:10.1016/j.advengsoft.2017.05.005.
  • Marino, S., S. Cattari, and S. Lagomarsino. 2018 Use of nonlinear static procedures for irregular URM buildings in literature and codes. 16th European Conference on Earthquake Engineering, Thessaloniki.
  • Mendes, N., P. B. Lourenço, and A. Campos-Costa. 2014. Shaking table testing of an existing masonry building: Assessment and improvement of the seismic performance. Earthquake Engineering & Structural Dynamics 43 (2):247–66. doi:10.1002/eqe.2342.
  • MIT. 2009. Istruzioni per l’applicazione delle “Norme tecniche per le costruzioni” di cui al Decreto Ministeriale 14/ 01/2008.Ministero Delle Infrastrutture e Dei Trasporti (MIT), Roma (In Italian).
  • NTC. 2008. Norme tecniche per le costruzioni (NTC). Decreto Ministeriale 14/01/2008, Ministero delle Infrastrutture e dei Trasporti. G.U. S.O. n.30 del 4/2/2008, Roma (In Italian).
  • NZSEE (2017) The seismic assessment of existing buildings. Technical guidelines for engineering assessments. Part C - Detailed Seismic Assessment. Part C8 - Unreinforced Masonry Buildings. New Zealand Society for Earthquake Engineering (NZSEE) Inc, Wellington.
  • Ottonelli, D., S. Cattari, and S. Lagomarsino. 2015. Urban risk assessment: Fragility functions for masonry buildings. In Recent advances in mechanics, mechatronics and civil, chemical and industrial engineering. Mathematics and computers in science and engineering series, 49, I. J. Rudas ed., 177–189. ISBN: 978-1-61804-325-2.
  • Penna, A., P. Morandi, M. Rota, C. F. Manzini, F. Da Porto, and G. Magenes. 2014. Performance of masonry buildings during the Emilia 2012 earthquake. Bulletin of Earthquake Engineering 12 (5):2255–73. doi:10.1007/s10518-013-9496-6.
  • Pitilakis, K., H. Crowley, and A. M. Kaynia. 2014. SYNER-G: Typology definition and fragility functions for physical elements at seismic risk. Springer. doi:10.1007/978-94-007-7872-6.
  • Porter, K., R. Kennedy, and R. Bachman. 2007. Creating fragility functions for performance-based earthquake engineering. Earthquake Spectra 23 (2):471–89. doi:10.1193/1.2720892.
  • Rebelo, A., J. M. Guedes, B. Quelhas, and T. Ilharco. 2015. Assessment of the mechanical behaviour of tabique walls through experimental tests. Proceedings of the 2nd International Conference on Historic Earthquake-Resistant Timber Frames in the Mediterranean Region, Lisboa.
  • Rota, M., A. Penna, and G. Magenes. 2010. A methodology for deriving analytical fragility curves for masonry buildings based on stochastic nonlinear analyses. Engineering Structures 32 (5):1312–23. doi:10.1016/j.engstruct.2010.01.009.
  • RSEU. 1903. Regulamento de Salubridade das Edificações Urbanas (RSEU), Decreto de 14/ 02/1903 (In Portuguese). Ministério das Obras Públicas.
  • Rubinstein, R. Y. 2011. Simulation and the Monte Carlo method. Wiley Series in Probability and Mathematical Statistics. New York: John Wiley & Sons, Inc.
  • Silva, V., H. Crowley, H. Varum, and R. Pinho. 2015. (2015) Seismic risk assessment for mainland Portugal. Bulletin of Earthquake Engineering 13:429–57. doi:10.1007/s10518-014-9630-0.
  • Simões, A. 2018. Evaluation of the seismic vulnerability of the unreinforced masonry buildings constructed in the transition between the 19th and 20th centuries in Lisbon, Portugal. PhD Thesis. Instituto Superior Técnico, Universidade de Lisboa. Lisboa.
  • Simões, A., J. Milošević, H. Meireles, R. Bento, S. Cattari, and S. Lagomarsino. 2015. Fragility curves for old masonry building types in Lisbon. Bulletin of Earthquake Engineering 13 (10):3083–105. doi:10.1007/s10518-015-9750-1.
  • Simões, A., J. G. Appleton, R. Bento, J. V. Caldas, P. B. Lourenço, and S. Lagomarsino. 2017. Architectural and structural characteristics of masonry buildings between the 19th and 20th Centuries in Lisbon, Portugal. International Journal of Architectural Heritage 11 (4):457–74. doi:10.1080/15583058.2016.1246624.
  • Simões, A., R. Bento, S. Cattari, and S. Lagomarsino. 2014. Seismic performance-based assessment of “Gaioleiro” buildings. Engineering Structures 80:486–500. doi:10.1016/j.engstruct.2014.09.025.
  • Simões, A., R. Bento, S. Lagomarsino, and P. B. Lourenço. 2016 Simplified evaluation of seismic vulnerability of early 20th century masonry buildings in Lisbon. Proceedings of the 10th International Conference on Structural Analysis of Historical Constructions, Leuven.
  • Simões, A. G., R. Bento, S. Lagomarsino, and P. B. Lourenço. 2018. The seismic assessment of masonry buildings between the 19th and 20th centuries in Lisbon - Evaluation of uncertainties. Proceedings of the 10th International Masonry Conference, Milan
  • Simões, A. G., R. Bento, S. Lagomarsino, S. Cattari, and P. B. Lourenço (2019a) Fragility functions for tall URM buildings around early 20th century in Lisbon. Part 2: application to different classes of buildings. International Journal of Architectural Heritage (in revision). Taylor & Francis Online.
  • Simões, A. G., R. Bento, S. Lagomarsino, S. Cattari, and P. B. Lourenço. 2019b. Seismic assessment of nineteenth and twentieth centuries URM buildings in Lisbon: Structural features and derivation of fragility curves. Bulletin of Earthquake Engineering, Springer. doi:10.1007/s10518-019-00618-z.
  • Turnšek, V., and F. Čačovič (1970) Some experimental results on the strength of brick masonry walls. Proceedings of the 2nd International Brick Masonry Conference, Stoke-on-Trent.
  • Turnšek, V., and P. Sheppard. 1980. The shear and flexural resistance of masonry walls. Proceedings of the International Research Conference on Earthquake Engineering, Skopje.
  • Vanin, F., D. Zaganelli, A. Penna, and K. Beyer. 2017. Estimates for the stiffness, strength and drift capacity of stone masonry walls based on 123 quasi-static cyclic tests reported in the literature. Bulletin of Earthquake Engineering 2017:1–45. doi:10.1007/s10518-017-0188-5.
  • Zhang, P., T. Nagae, J. McCormick, M. Ikenaga, M. Katsuo, and M. Nakashima. 2008. Friction-based sliding between steel and steel, steel and concrete, and wood and stone. Proceedings of the 14th World Conference on Earthquake Engineering, Beijing, China.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.