Publication Cover
International Journal of Architectural Heritage
Conservation, Analysis, and Restoration
Volume 15, 2021 - Issue 3
341
Views
9
CrossRef citations to date
0
Altmetric
Research Article

Impact of a Retrofitting Project on Thermal Comfort and Energy Efficiency of a Historic School in Miliana, Algeria

&
Pages 407-425 | Received 12 Dec 2018, Accepted 17 May 2019, Published online: 28 May 2019

References

  • Abdelatia, B. 2013. Contribution à l’étude du confort visuel en lumière naturelle dans les établissements scolaires en Libye: évaluation qualitative et préconisations. Doctoral dissertation, Bordeaux 1.
  • Bianchi, F., A. Pisello, G. Baldinelli, and F. Asdrubali. 2014. Infrared thermography assessment of thermal bridges in building envelope: Experimental validation in a test room setup. Sustainability 6 (10):7107–20. doi:10.3390/su6107107.
  • British Standards Institute, S., British Standards, I., European Committee for, S., British Standards Institution. Technical Committee Cpl, L., related equipment, l., and lighting. 2011. Light and Lighting – Lighting of Work Places: Indoor work places. Part 1: BSI/126.
  • Buvik, K., G. Andersen, and S. Tangen. 2014. Ambitious renovation of a historical school building in cold climate. Energy Procedia 48:1442–48. doi:10.1016/j.egypro.2014.02.163.
  • California-IR Thermal Imaging Experts. 2010. Certified thermography report - city of rancho palos verdes. 2537-D Pacific Coast Hwy #234, Torrance, CA 90505 www.California-IR.com. Accessed February 20, 2019. https://www.rpvca.gov/DocumentCenter/View/2919/Ladera-Linda-RPV-IR-Report-Final-PDF.
  • CNERIB. 2015. Détermination conductivité thermique. Accessed March 24, 2019. https://www.cerib.com/wp-content/uploads/2017/06/dp-116-conductivite-thermiquemethode-ct-metre.pdf.
  • Conceição, E. Z. E., and M. M. Lúcio. 2008. Thermal study of school buildings in winter conditions. Building and Environment 43 (5):782–92. doi:10.1016/j.buildenv.2007.01.029.
  • Dall’O, G., E. Bruni, and A. Panza. 2013. Improvement of the sustainability of existing school buildings according to the Leadership in Energy and Environmental Design (LEED)® Protocol: A case study in Italy. Energies 6 (12):6487–507. doi:10.3390/en6126487.
  • Dascalaki, E. G., and V. G. Sermpetzoglou. 2011. Energy performance and indoor environmental quality in Hellenic schools. Energy and Buildings 43 (2–3):718–27. doi:10.1016/j.enbuild.2010.11.017.
  • do rosário Veiga, M., A. Fragata, A. L. Velosa, A. C. Magalhães, and G. Margalha. 2010. Lime-based mortars: Viability for use as substitution renders in historical buildings. International Journal of Architectural Heritage 4 (2):177–95. doi:10.1080/15583050902914678.
  • Elert, K., C. Rodriguez-Navarro, E. S. Pardo, E. Hansen, and O. Cazalla. 2002. Lime mortars for the conservation of historic buildings. Studies in Conservation 47 (1):62–75.
  • Energyplus. 2015. EnergyPlus Documentation Engineering Reference: the reference to EnergyPlus calculations. US Department of Energy. Accessed May 22, 2019. https://energyplus.net/sites/default/files/pdfs_v8.3.0/EngineeringReference.pdf
  • Erhorn-Kluttig, H., and H. Erhorn. 2014. School of the Future–Towards zero emission with high performance indoor environment. Energy Procedia 48:1468–73. doi:10.1016/j.egypro.2014.02.166.
  • FLIR Systems. 2012. Technical Data FLIR i7-Isoproc. Accessed February 20, 2019. https://www.isoproc.be/images/uploads/products/Flir/i/i7-technische-fiche-technique-flircamera-thermographie-thermographie-EN.pdf.
  • Fromme, H., D. Twardella, S. Dietrich, D. Heitmann, R. Schierl, B. Liebl, and H. Rüden. 2007. Particulate matter in the indoor air of classrooms—Exploratory results from Munich and surrounding area. Atmospheric Environment 41 (4):854–66. doi:10.1016/j.atmosenv.2006.08.053.
  • Frontczak, M., and P. Wargocki. 2011. Literature survey on how different factors influence human comfort in indoor environments. Building and Environment 46 (4):922–37. doi:10.1016/j.buildenv.2010.10.021.
  • Hanna, R. 2002. Environmental appraisal of historic buildings in Scotland: The case study of the Glasgow School of Art. Building and Environment 37 (1):1–10. doi:10.1016/S0360-1323(00)00099-8.
  • Haverinen-Shaughnessy, U., R. J. Shaughnessy, E. C. Cole, O. Toyinbo, and D. J. Moschandreas. 2015. An assessment of indoor environmental quality in schools and its association with health and performance. Building and Environment 93:35–40. doi:10.1016/j.buildenv.2015.03.006.
  • ISO, I. 2005. 7730: Ergonomics of the thermal environment — analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal comfort criteria. Management 3(605):e615.
  • Julien, B. 2011. Rapport thermographie infrarouge-enerconsult. Accessed February 20, 2019. https://www.enerconsult.be/pdf/Thermographie%20infrarouge/EXEMPLE%20-%20Rapport%20Thermographie%20Infrarouge.pdf.
  • Korsavi, S. S., Z. S. Zomorodian, and M. Tahsildoost. 2016. Visual comfort assessment of daylit and sunlit areas: A longitudinal field survey in classrooms in Kashan, Iran. Energy and Buildings 128:305–18. doi:10.1016/j.enbuild.2016.06.091.
  • La Fleur, L., B. Moshfegh, and P. Rohdin. 2017. Measured and predicted energy use and indoor climate before and after a major renovation of an apartment building in Sweden. Energy and Buildings 146:98–110. doi:10.1016/j.enbuild.2017.04.042.
  • La Fleur, L., P. Rohdin, and B. Moshfegh. 2018. Energy use and perceived indoor environment in a Swedish multifamily building before and after major renovation. Sustainability 10 (3):766. doi:10.3390/su10030766.
  • Lassandro, P., T. Cosola, and A. Tundo. 2015. School building heritage: Energy efficiency, thermal and lighting comfort evaluation via virtual tour. Energy Procedia 78:3168–73. doi:10.1016/j.egypro.2015.11.775.
  • Liu, L., P. Rohdin, and B. Moshfegh. 2015. Evaluating indoor environment of a retrofitted multi-family building with improved energy performance in Sweden. Energy and Buildings 102:32–44. doi:10.1016/j.enbuild.2015.05.021.
  • Martínez-Molina, A., I. Tort-Ausina, S. Cho, and J. L. Vivancos. 2016. Energy efficiency and thermal comfort in historic buildings: A review. Renewable and Sustainable Energy Reviews 61:70–85. doi:10.1016/j.rser.2016.03.018.
  • Mateus, N. M., A. Pinto, and G. C. Da Graça. 2014. Validation of EnergyPlus thermal simulation of a double skin naturally and mechanically ventilated test cell. Energy and Buildings 75:511–22. doi:10.1016/j.enbuild.2014.02.043.
  • Michael, A., and C. Heracleous. 2017. Assessment of natural lighting performance and visual comfort of educational architecture in Southern Europe: The case of typical educational school premises in Cyprus. Energy and Buildings 140:443–57. doi:10.1016/j.enbuild.2016.12.087.
  • Mihai, T., and V. Iordache. 2016. Determining the indoor environment quality for an educational building. Energy Procedia 85:566–74. doi:10.1016/j.egypro.2015.12.246.
  • Mishra, A. K., and M. Ramgopal. 2015. A thermal comfort field study of naturally ventilated classrooms in Kharagpur, India. Building and Environment 92:396–406. doi:10.1016/j.buildenv.2015.05.024.
  • Morelli, M., L. Rønby, S. E. Mikkelsen, M. G. Minzari, T. Kildemoes, and H. M. Tommerup. 2012. Energy retrofitting of a typical old Danish multi-family building to a “nearly-zero” energy building based on experiences from a test apartment. Energy and Buildings 54:395–406. doi:10.1016/j.enbuild.2012.07.046.
  • Mosquera, M. J., B. Silva, B. Prieto, and E. Ruiz-Herrera. 2006. Addition of cement to lime-based mortars: Effect on pore structure and vapor transport. Cement and Concrete Research 36 (9):1635–42. doi:10.1016/j.cemconres.2004.10.041.
  • Pacheco-Torgal, F., J. Faria, and S. Jalali. 2012. Some considerations about the use of lime–Cement mortars for building conservation purposes in Portugal: A reprehensible option or a lesser evil? Construction and Building Materials 30:488–94. doi:10.1016/j.conbuildmat.2011.12.003.
  • Pérez-Lombard, L., J. Ortiz, and C. Pout. 2008. A review on buildings energy consumption information. Energy and Buildings 40 (3):394–98. doi:10.1016/j.enbuild.2007.03.007.
  • Ricciardi, P., and C. Buratti. 2018. Environmental quality of university classrooms: Subjective and objective evaluation of the thermal, acoustic and lighting comfort conditions. Building and Environment 127:23–36. doi:10.1016/j.buildenv.2017.10.030.
  • Sciurpi, F., C. Carletti, and L. Pierangioli 2018. Energy retrofitting of school buildings: Energy audit of a case study. Paper presented at Conference VI Convegno Internazionale ReUSO Messina, 11–13 Ottobre.
  • Seppänen, O. A., and W. Fisk. 2006. Some quantitative relations between indoor environmental quality and work performance or health. Hvac&R Research 12 (4):957–73. doi:10.1080/10789669.2006.10391446.
  • Tahsildoost, M., and Z. S. Zomorodian. 2015. Energy retrofit techniques: An experimental study of two typical school buildings in Tehran. Energy and Buildings 104:65–72. doi:10.1016/j.enbuild.2015.06.079.
  • The SPAB. 2014. Energy efficiency in old buildings. Accessed August 22, 2018. https://www.spab.org.uk/sites/default/files/documents/MainSociety/SPAB%20Briefing_Energy%20efficiency.pdf.
  • Thomsen, K. E., J. Rose, O. Mørck, S. Ø. Jensen, I. Østergaard, H. N. Knudsen, and N. C. Bergsøe. 2016. Energy consumption and indoor climate in a residential building before and after comprehensive energy retrofitting. Energy and Buildings 123:8–16. doi:10.1016/j.enbuild.2016.04.049.
  • Turunen, M., O. Toyinbo, T. Putus, A. Nevalainen, R. Shaughnessy, and U. Haverinen-Shaughnessy. 2014. Indoor environmental quality in school buildings, and the health and wellbeing of students. International Journal of Hygiene and Environmental Health 217 (7):733–39. doi:10.1016/j.ijheh.2014.03.002.
  • Wang, Z., A. Li, J. Ren, and Y. He. 2014. Thermal adaptation and thermal environment in university classrooms and offices in Harbin. Energy and Buildings 77:192–96. doi:10.1016/j.enbuild.2014.03.054.
  • Wong, L. T., K. W. Mui, and P. S. Hui. 2008. A multivariate-logistic model for acceptance of indoor environmental quality (IEQ) in offices. Building and Environment 43 (1):1–6. doi:10.1016/j.buildenv.2007.01.001.
  • Wong, N. H., and S. S. Khoo. 2003. Thermal comfort in classrooms in the tropics. Energy and Buildings 35 (4):337–51. doi:10.1016/S0378-7788(02)00109-3.
  • Yao, J., F. Yang, Z. Zhuang, Y. Shao, and P. F. Yuan. 2018. The effect of personal and microclimatic variables on outdoor thermal comfort: A field study in a cold season in Lujiazui CBD, Shanghai. Sustainable Cities and Society 39:181–88. doi:10.1016/j.scs.2018.02.025.
  • Zhang, G., C. Zheng, W. Yang, Q. Zhang, and D. J. Moschandreas. 2007. Thermal comfort investigation of naturally ventilated classrooms in a subtropical region. Indoor and Built Environment 16 (2):148–58. doi:10.1177/1420326X06076792.
  • Zinzi, M., S. Agnoli, G. Battistini, and G. Bernabini. 2014. Retrofit of an existing school in Italy with high energy standards. Energy Procedia 48:1529–38. doi:10.1016/j.egypro.2014.02.173.
  • Zomorodian, Z. S., M. Tahsildoost, and M. Hafezi. 2016. Thermal comfort in educational buildings: A review article. Renewable and Sustainable Energy Reviews 59:895–906. doi:10.1016/j.rser.2016.01.033.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.