278
Views
5
CrossRef citations to date
0
Altmetric
Articles

Vibration-Based Damage Detection in Historical Adobe Structures: Laboratory and Field Applications

ORCID Icon, ORCID Icon, ORCID Icon, & ORCID Icon
Pages 1005-1028 | Received 04 Apr 2019, Accepted 13 Jun 2019, Published online: 08 Jul 2019

References

  • Alcala, C. F., and S. J. Qin. 2010. Reconstruction-based contribution for process monitoring with kernel principal component analysis. Industrial & Engineering Chemistry Research 49 (17):7849–57. doi:10.1021/ie9018947.
  • Azzara, R. M., G. De Roeck, M. Girardi, C. Padovani, D. Pellegrini, and E. Reynders. 2018. The influence of environmental parameters on the dynamic behaviour of the San Frediano bell tower in Lucca. Engineering Structures 156 (March 2017):175–87. doi:10.1016/j.engstruct.2017.10.045.
  • Bolton, D. 1980. The computation of equivalent potential temperature. Monthly Weather Review 108 (7):1046–53. doi:10.1175/1520-0493(1980)108<1046:TCOEPT>2.0.CO;2.
  • Boroschek, R., and F. Tamayo. 2014. Evaluation of the environmental effects on a medium rise building. 7th European Workshop on Structural Health Monitoring, Nantes, France.
  • Castillo, M., E. Kuon, and C. Aguirre. 2012. Saint Peter the Apostle of Andahuaylillas: Tour guide. Peru, Cusco Assoc. Jesus Obrero.
  • Clementi, F., S. Lenci, and T. Sadowski. 2008. Fracture characteristics of unfired earth. International Journal of Fracture 149 (2):193–98. doi:10.1007/s10704-008-9239-x.
  • Clementi, F., A. Pierdicca, A. Formisano, F. Catinari, and S. Lenci. 2017. Numerical model upgrading of a historical masonry building damaged during the 2016 Italian earthquakes: The case study of the Podestà palace in Montelupone (Italy). Journal of Civil Structural Health Monitoring 7 (5):703–17. doi:10.1007/s13349-017-0253-4.
  • Delgadillo, R., G. Zonno, R. Boroschek, P. B. Lourenço, and R. Aguilar. 2017. Study of the environmental influence on the dynamic behavior of adobe walls: Preliminary test in laboratory specimens. Experimental Vibration Analysis for Civil Engineering Structures, pp. 758–69. Cham: Springer.
  • Dessi, D., and G. Camerlengo. 2015. Damage identification techniques via modal curvature analysis: Overview and comparison. Mechanical Systems and Signal Processing 52-53 (1):181–205. doi:10.1016/j.ymssp.2014.05.031.
  • Farrar, C. R., and K. Worden. 2012. Structural health monitoring: A machine learning perspective. West Sussex, UK: John Wiley Sons.
  • Fontana, P., U Grünberg, and L. Miccoli. 2017. Experimental investigations on the initial shear strength of masonry with earth mortars. International Journal of Masonry Research and Innovation 3 (1):34. doi:10.1504/IJMRI.2018.089051.
  • Formisano, G. Chiumiento, E. Dessi, and F. Frabbrocino. 2017. Experimental shear tests on tuff triplets with hemp fibres reinforced lime mortar. AIMETA 2017, XXIII Conference, The Italian Association of Theoretical and Applied Mechanics. Ascione L., Berardi V., Feo L., Fraternali F. and Michele Tralli  A.M. (eds.), Salerno, Italy.
  • Formisano, A., E. Dessì, and R. Landolfo. 2017. Mechanical-physical experimental tests on lime mortars and bricks reinforced with hemp. AIP Conference Proceedings 1906: 090006 1-90006 4. doi:10.1063/1.5012363.
  • Gazzani, V., M. Poiani, F. Clementi, G. Milani, and S. Lenci. 2018. Modal parameters identification with environmental tests and advanced numerical analyses for masonry bell towers: A meaningful case study. Procedia Structural Integrity 11 (January 2019):306–13. doi:10.1016/j.prostr.2018.11.040.
  • Google. Google maps. 2018. [Online]. Accessed December 01, 2018. https://www.google.com/maps/dir/Iglesia+de+Andahuaylillas,+Andahuailillas/Espinar/@-14.1691397,-71.9541505,184330m/data=!3m1!1e3!4m11!4m10!1m5!1m1!1s0x916e89523faaddff:0x75b17776d672ea52!2m2!1d-71.6778104!2d-13.6745553!1m3!2m2!1d-71.55!2d-14.66.
  • Instituto Geofísico del Perú. Sismos reportados. 2018. [Online]. Accessed November 26, 2018. http://intranet.igp.gob.pe/bdsismos/ultimosSismosSentidos.php#.
  • Kullaa, J. 2011. Distinguishing between sensor fault, structural damage, and environmental or operational effects in structural health monitoring. Mechanical Systems and Signal Processing 25 (8):2976–89. doi:10.1016/j.ymssp.2011.05.017.
  • Lenci, S., F. Clementi, and T. Sadowski. 2012. Experimental determination of the fracture properties of unfired dry earth. Engineering Fracture Mechanics 87:62–72. doi:10.1016/j.engfracmech.2012.03.005.
  • Lenci, S., Q. Piattoni, F. Clementi, and T. Sadowski. 2011. An experimental study on damage evolution of unfired dry earth under compression. International Journal of Fracture 172 (2):193–200. doi:10.1007/s10704-011-9651-5.
  • Maeck, J., B. Peeters, and G. De Roeck. 2001. Damage Identification on the Z24 bridge using vibration monitoring. Smart Materials and Structures 10:512–17. doi:10.1088/0964-1726/10/3/313.
  • Magalhães, F., A. Cunha, and E. Caetano. 2012. Vibration based structural health monitoring of an arch bridge: From automated OMA to damage detection. Mechanical Systems and Signal Processing 28:212–28. doi:10.1016/j.ymssp.2011.06.011.
  • Marques, R., S. Ivancic, C. Briceño, R. Aguilar, R. Perucchio, and J. Vargas. 2014. Study on the seismic behaviour of St. Peter the Apostle Church of Andahuaylillas in Cusco, Peru. 9IMC-9th Inter- national Masonry Conference, Guimaraes, Portugal.
  • Masciotta, M., L. F. Ramos, P. Lourenço, and M. Vasta. 2014. Structural monitoring and damage identification on a masonry chimney by a spectral-based identification technique, IX International Conference on Structural Dynamics, EURODYN 2014, University of Porto, Porto, Portugal, July, 211–18.
  • The Matworks Inc. 2006. Matlab User’s Manual. https://www.mathworks.com/
  • Miccoli, L., A. Garofano, P. Fontana, and U. Müller. 2015. Experimental testing and finite element modelling of earth block masonry. Engineering Structures 104 (December):80–94. doi:10.1016/j.engstruct.2015.09.020.
  • Miccoli, L., U. Müller, and S. Pospíšil. 2017. Rammed earth walls strengthened with polyester fabric strips: Experimental analysis under in-plane cyclic loading. Construction and Building Materials 149 (September):29–36. doi:10.1016/j.conbuildmat.2017.05.115.
  • Miccoli, L., R. A. Silva, D. V. Oliveira, and U. Müller. 2019. Static behavior of cob: Experimental testing and finite-element modeling. Journal of Materials in Civil Engineering 31 (4):04019021. doi:10.1061/(ASCE)MT.1943-5533.0002638.
  • MicroDAQ LTD. HOBO temperature and humidity data logger. 2017. [Online]. https://www.microdaq.com/onset-hobo-ux100-humidity-data-logger.php.
  • Ministerio de Vivienda Construcción y Saneamiento. 2018. Norma E.030: Diseño Sismorresistente. Reglam. Nac. Edif. Diario El Peruano, Lima, Peru.
  • Mujica, L. E., J. Rodellar, A. Fernández, and A. Güemes. 2011. Q-statistic and t2-statistic pca-based measures for damage assessment in structures. Structural Health Monitoring: An International Journal 10 (5):539–53. doi:10.1177/1475921710388972.
  • National Instruments. NI SCXI-100. 2016. [Online]. https://www.ni.com/pdf/manuals/374423l.pdf.
  • ONSET. HOBO UX100-011 data logger. 2017. [Online]. http://www.onsetcomp.com.
  • Oyarzo-vera, C., J. M. Ingham, and N. Chouw. 2014. Vibration-based damage identification of an unreinforced masonry house model. EURODYN 2014-9th International Conference on Structural Dynamics, pp. 2477–84. July, Porto, Portugal.
  • PCB Piezotronics. Accelerometer 393B31. 2016. [Online]. www.pcb.com/Products.aspx?m=393B31.
  • Peeters, B., and G. De Roeck. 1999. Reference-based stochastic subspace identification for output-only modal analysis. Mechanical Systems and Signal Processing 13 (6):855–78. doi:10.1006/mssp.1999.1249.
  • Peeters, B., and G. De Roeck. 2000. One year monitoring of the Z24-bridge: Environmental influences versus damage events. Proceedings of the International Modal Analysis Conference - IMAC 2 (MAY):1570–76.
  • Penha, R., and J. Hines. 2001. Using principal component analysis modeling to monitor temperature sensors in a nuclear research reactor. Proceedings of the 2001 Maintenance and Reliability Conference (MARCON 2001) 6–9.
  • Ramos, L. F. 2007. Damage identification on masonry structures based on vibration signatures. Guimaraes, Portugal: Universidade do Minho.
  • Ramos, L. F., G. De Roeck, P. B. Lourenço, and A. Campos-costa. 2006. Vibration based damage identification of masonry structures. Structural Analysis of Historical Constructions (1996):641–50.
  • Reynders, E., G. Wursten, and G. De Roeck. 2014. Output-only structural health monitoring in changing environmental conditions by means of nonlinear system identification. Structural Health Monitoring: An International Journal 13 (1):82–93. doi:10.1177/1475921713502836.
  • Ubertini, F., N. Cavalagli, A. Kita, and G. Comanducci. 2018. Assessment of a monumental masonry bell-tower after 2016 central Italy seismic sequence by long-term SHM. Bulletin of Earthquake Engineering 16 (2):775–801. doi:10.1007/s10518-017-0222-7.
  • Ubertini, F., G. Comanducci, N. Cavalagli, A. Laura Pisello, A. Luigi Materazzi, and F. Cotana. 2017. Environmental effects on natural frequencies of the San Pietro bell tower in Perugia, Italy, and their removal for structural performance assessment. Mechanical Systems and Signal Processing 82:307–22. doi:10.1016/j.ymssp.2016.05.025.
  • R. Villamizar, Quiroga, J. L., Camacho, J., Mujica, L. E., and Ruiz, M. L. 2014. Structural damage detection algorithm based on principal component indexes and embedded on a real time platform. EWSHM - 7th European Workshop on Structural Health Monitoring, Nantes, France.
  • World Monument Fundation. Information related to San Pedro Apóstol de Andahuaylillas Church. [Online]. Accessed March 30, 2018. https://www.wmf.org/project/san-pedro-apóstol-de-andahuaylillas-church.
  • Zhang, Q., and L. Ljung. 2004. Multiple steps prediction with non-linear ARX models. IFAC Nonlinear Control Systems. 37(13):309–14.
  • Zhou, G.-D., and T.-H. Yi. 2014. A summary review of correlations between temperature and vibration properties of long-span bridges. Mathematical Problems in Engineering,  2014, doi:10.1155/2014/638209.
  • Zonno, G., R. Aguilar, R. Boroschek, and P. B. Lourenço. 2018. Automated long-term dynamic monitoring using hierarchical clustering and adaptive modal tracking: Validation and applications. Journal of Civil Structural Health Monitoring (2018) 8:791–808..
  • Zonno, G., R. Aguilar, R. Boroschek, and P. B. Lourenço. 2019a. Experimental analysis of the thermohygrometric effects on the dynamic behavior of adobe systems. Construction and Building Materials 208:158–74. doi:10.1016/j.conbuildmat.2019.02.140.
  • Zonno, G., R. Aguilar, R. Boroschek, and P. B. Lourenço. 2019b. Analysis of the long and short term effects of temperature and humidity on the structural properties of adobe buildings using continuous monitoring. Engineering Structures, 196, https://doi.org/10.1016/j.engstruct.2019.109299.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.