Publication Cover
International Journal of Architectural Heritage
Conservation, Analysis, and Restoration
Volume 15, 2021 - Issue 4
186
Views
3
CrossRef citations to date
0
Altmetric
Research Article

An Equivalent Fiber Frame Model for Nonlinear Analysis of Masonry Structures

ORCID Icon & ORCID Icon
Pages 644-668 | Received 23 Jun 2019, Accepted 28 Jun 2019, Published online: 22 Jul 2019

References

  • Alemdar, B. N., and D. W. White. 2005. Displacement, flexibility, and mixed beam–Column finite element formulations for distributed plasticity analysis. Journal of Structural Engineering 131 (12):1811–19. doi:10.1061/(ASCE)0733-9445(2005)131:12(1811).
  • Almeida, J. P., D. Tarquini, and K. Beyer. 2016. Modelling approaches for inelastic behaviour of RC walls: Multi-level assessment and dependability of results. Archives of Computational Methods in Engineering 23 (1):69–100. doi:10.1007/s11831-014-9131-y.
  • Bazoune, A., Y. A. Khulief, and N. G. Stephen. 2003. Shape functions of three-dimensional Timoshenko beam element. Journal of Sound and Vibration 259 (2):473–80. doi:10.1006/jsvi.2002.5122.
  • Belmouden, Y., and P. Lestuzzi. 2009. An equivalent frame model for seismic analysis of masonry and reinforced concrete buildings. Construction and Building Materials 23 (1):40–53. doi:10.1016/j.conbuildmat.2007.10.023.
  • Bocciarelli, M., and G. Barbieri. 2017. A numerical procedure for the pushover analysis of masonry towers. Soil Dynamics and Earthquake Engineering 93:162–71. doi:10.1016/j.soildyn.2016.07.022.
  • Brencich, A., L. Gambarotta, and S. Lagomarsino. 1998. A macroelement approach to the three-dimensional seismic analysis of masonry buildings. In 11th European Conference on Earthquake Engineering, 6–11.
  • Caliò, I., F. Cannizzaro, E. D’Amore, M. Marletta, and B. Pantò. 2008. A new discrete-element approach for the assessment of the seismic resistance of composite reinforced concrete-masonry buildings. In: Proceedings of AIP (American Institutof Physics). 1020 (PART 1), 832–39.
  • Caliò, I., M. Marletta, and B. Pantò. 2005. A simplified model for the evaluation of the seismic behaviour of masonry buildings. Paper read at Proceedings of the 10th international conference on civil, structural and environmental engineering computing. Stirlingshire, UK: Civil-Comp Press; Paper 195 from ISBN 1-905088-02-7.
  • Caliò, I., M. Marletta, and B. Pantò. 2012. A new discrete element model for the evaluation of the seismic behaviour of unreinforced masonry buildings. Engineering Structures 40:327–38.
  • Cervenka, V., and K. H. Gerstle. 1971. Inelastic analysis of reinforced concrete panels: Theory. Publications of the IABSE 31 (11):31–45.
  • Collins, M. P., F. J. Vecchio, and G. Mehlhorn. 1985. An international competition to predict the response of reinforced concrete panels. Canadian Journal of Civil Engineering 12 (3):624–44. doi:10.1139/l85-070.
  • Crivelli, L. A., and C. A. Felippa. 1993. A three-dimensional non-linear Timoshenko beam based on the core-congruential formulation. International Journal for Numerical Methods in Engineering 36 (21):3647–73. doi:10.1002/nme.1620362106.
  • D’Asdia, P., and A. Viskovic. 1995. Analyses of a masonry wall subjected to horizontal actions on its plane, employing a non-linear procedure using changing shape finite elements. In Transactions on modelling and simulation, vol. 10, pp. 519–26. WIT Press.
  • Darwin, D., and D. A. Pecknold. 1977. Nonlinear biaxial stress-strain law for concrete. Journal of Engineering Mechanics 103. ASCE Proceeding, 229–41.
  • Demirlioglu, K., S. Gonen, S. Soyoz, and M. P. Limongelli. 2018. In-Plane Seismic Response Analyses of a Historical Brick Masonry Building Using Equivalent Frame and 3D FEM Modeling Approaches. International Journal of Architectural Heritage 1–19. doi:10.1080/15583058.2018.1529208.
  • Dong, S. B., C. Alpdogan, and E. Taciroglu. 2010. Much ado about shear correction factors in Timoshenko beam theory. International Journal of Solids and Structures 47 (13):1651–65. doi:10.1016/j.ijsolstr.2010.02.018.
  • Doven, M. S., and U. Kafkas. 2017. Micro modelling of masonry walls by plane bar elements for detecting elastic behavior. Structural Engineering and Mechanics62 (5):643–64.
  • Dvorkin, E. N., E. Onte, and J. Oliver. 1988. On a non-linear formulation for curved Timoshenko beam elements considering large displacement/rotation increments. International Journal for Numerical Methods in Engineering 26 (7):1597–613. doi:10.1002/nme.1620260710.
  • FEMA, P. 2000. Commentary for the seismic rehabilitation of buildings. FEMA-356, Federal Emergency Management Agency, Washington, DC.
  • Feng, Y. T., D. Perić, and D. R. J. Owen. 1995. Determination of travel directions in path-following methods. Mathematical and Computer Modelling 21 (7):43–59. doi:10.1016/0895-7177(95)00030-6.
  • Franklin, S., J. Lynch, and D. P. Abrams. 2003. Performance of rehabilitated URM shear walls: Felxural behavior of piers. Illinois: Department of Civil Engineering, University of Illinois at Urbana-Champaign Urbana.
  • Gambarotta, L., and S. Lagomarsino. 1997. Damage models for the seismic response of brick masonry shear walls. Part I: The mortar joint model and its applications. Earthquake Engineering & Structural Dynamics 26 (4):423–39.
  • Ganz, H. R., and B. Thürlimann. 1982. Tests on the biaxial strength of masonry. Rep. No. 7502 no. 3. Zurich: Institute of Structural Engineering.
  • Gerasimidis, S., G. Deodatis, T. Kontoroupi, and M. Ettouney. 2015. Loss-of-stability induced progressive collapse modes in 3D steel moment frames. Structure and Infrastructure Engineering 11 (3):334–44. doi:10.1080/15732479.2014.885063.
  • Ghaisas, K. V., D. Basu, S. Brzev, and J. J. P. Gavilán. 2017. Strut-and-Tie Model for seismic design of confined masonry buildings. Construction and Building Materials 147:677–700. doi:10.1016/j.conbuildmat.2017.04.200.
  • Ghiassi, B., M. Soltani, and A. A. Tasnimi. 2011. Seismic evaluation of masonry structures strengthened with reinforced concrete layers. Journal of Structural Engineering 138 (6):729–43. doi:10.1061/(ASCE)ST.1943-541X.0000513.
  • Ghiassi, B., M. Soltani, and A. A. Tasnimi. 2012. A simplified model for analysis of unreinforced masonry shear walls under combined axial, shear and flexural loading. Engineering Structures No 42:396–409. doi:10.1016/j.engstruct.2012.05.002.
  • Herrmann, L. R. 1978. Finite element analysis of contact problems. Journal of the Engineering Mechanics Division 104 (5):1043–57.
  • International Conference of Building Officials. 1997. Uniform Building Code. Whittier, CA: International Conference of Building Officials.
  • Jirásek, M., and Z. P. Bazant. 2002. Inelastic analysis of structures. Chichester: John Wiley & Sons.
  • Kabeyasawa, T., H. Shiohara, S. Otani, and H. Aoyama. 1983. Analysis of the full-scale seven-story reinforced concrete test structure. Journal of the Faculty of Engineering, University of Tokyo 37 (2):431–78.
  • Karantoni, F. V., and M. N. Fardis. 1992. Effectiveness of seismic strengthening techniques for masonry buildings. Journal of Structural Engineering 118 (7):1884–902. doi:10.1061/(ASCE)0733-9445(1992)118:7(1884).
  • Kwan, A. K. H. 1991. Analysis of coupled wall/frame structures by frame method with shear deformation allowed. Proceedings of the Institution of Civil Engineers 91 (2):273–97. doi:10.1680/iicep.1991.14983.
  • Lagomarsino, S., A. Penna, A. Galasco, and S. Cattari. 2013. TREMURI program: An equivalent frame model for the nonlinear seismic analysis of masonry buildings. Engineering Structures 56:1787–99. doi:10.1016/j.engstruct.2013.08.002.
  • Li, B. 1989. Contact density model for stress transfer across cracks in concrete. Journal of the Faculty of Engineering, the University of Tokyo 1:9–52.
  • Liberatore, D., D. Addessi, and M. Sangirardi. 2017. A nonlinear macroelement formulation for the seismic analysis of masonry buildings. Paper read at COMPDYN 2017 6th ECCOMAS thematic conference on computational methods in structural dynamics and earthquake engineering, Rhodes Island, Greece.
  • Lourenço, P. B., and J. G. Rots. 1997. Multisurface interface model for analysis of masonry structures. Journal of Engineering Mechanics 123 (7):660–68. doi:10.1061/(ASCE)0733-9399(1997)123:7(660).
  • Lourenço, P. B., J. G. Rots, and J. Blaauwendraad. 1998. Continuum model for masonry: Parameter estimation and validation. Journal of Structural Engineering 124 (6):642–52. doi:10.1061/(ASCE)0733-9445(1998)124:6(642).
  • Lourenço, P. J. B. B. 1997. “Computational strategies for masonry structures.” Doctoral diss., Delft University of Technology, Delft, The Netherlands.
  • Maekawa, K., H. Okamura, and A. Pimanmas. 2003. Non-linear mechanics of reinforced concrete. New York: Spon Press.
  • Magenes, G., and A. D. Fontana. 1998. Simplified non-linear seismic analysis of masonry buildings. Proc. of the British Masonry Society, No. 8, October, 190–195.
  • Manojlović, D., D. Jovanovic, and V. Vukobratovic. 2018. Pushover analysis of a four-storey masonry building designed according to eurocode. iNDiS Conference at Novi Sad, Serbia.
  • Marques, R., F. Pedreira, G. Vasconcelos, and P. B. Lourenço. 2012. Pushover analysis of a modern aggregate of masonry buildings through macro-element modelling. Proceedings of the 15th International Brick and Block Masonry Conference, Florianopolis, Brazil.
  • Marques, R., and P. B. Lourenço. 2011. Possibilities and comparison of structural component models for the seismic assessment of modern unreinforced masonry buildings. Computers & Structures 89 (21–22):2079–91. doi:10.1016/j.compstruc.2011.05.021.
  • Marques, R., and P. B. Lourenço. 2014. Unreinforced and confined masonry buildings in seismic regions: Validation of macro-element models and cost analysis. Engineering Structures 64:52–67. doi:10.1016/j.engstruct.2014.01.014.
  • Massart, T. J., R. H. J. Peerlings, and M. G. D. Geers. 2007. An enhanced multi-scale approach for masonry wall computations with localization of damage. International Journal for Numerical Methods in Engineering 69 (5):1022–59. doi:10.1002/(ISSN)1097-0207.
  • Mergos, P., and K. Beyer. 2013. Modelling shear-flexure interaction in equivalent frame models of slender reinforced concrete walls. Proceedings of the 15th World Conference on Earthquake Engineering, Lisboa, Portugal.
  • Minga, E., L. Macorini, and B. A. Izzuddin. 2018. A 3D mesoscale damage-plasticity approach for masonry structures under cyclic loading. Meccanica 53 (7):1591–611. doi:10.1007/s11012-017-0793-z.
  • MSJC. 2013. Masonry Standards Joint Committee, Building code requirements for masonry structures. Detroit, MI: American Concrete Institute.
  • Naraine, K., and S. Sinha. 1991. Cyclic behavior of brick masonry under biaxial compression. Journal of Structural Engineering 117 (5):1336–55. doi:10.1061/(ASCE)0733-9445(1991)117:5(1336).
  • Okamura, H., and K. Maekawa. 1991. Nonlinear analysis and constitutive models of reinforced concrete. Tokyo: Gihodo-Shuppan Co.
  • Orakcal, K., L. M. M. Sanchez, and J. W. Wallace. 2006. Analytical modeling of reinforced concrete walls for predicting flexural and coupled-shear-flexural responses. Berkeley: Pacific Earthquake Engineering Research Center, College of Engineering, University of California.
  • Pang, X.-B. D., and T. T. C. Hsu. 1995. Behavior of reinforced concrete membrane elements in shear. Structural Journal 92 (6):665–79.
  • Pantò, B., F. Cannizzaro, I. Caliò, and P. B. Lourenço. 2017. Numerical and experimental validation of a 3D macro-model for the in-plane and out-of-plane behavior of unreinforced masonry walls. International Journal of Architectural Heritage 11 (7):946–64.
  • Penelis, G. G. 2006. An efficient approach for pushover analysis of unreinforced masonry (URM) structures. Journal of Earthquake Engineering 10 (3):359–79. doi:10.1080/13632460609350601.
  • Petracca, M. 2016. Computational multiscale analysis of masonry structures. PhD thesis, University G. d’Annunzio of Chieti-Pescara (UNICH) – Universitat Politecnica de Catalunya (UPC-BarcelonaTech).
  • Petracca, M., L. Pelà, R. Rossi, S. Zaghi, G. Camata, and E. Spacone. 2017. Micro-scale continuous and discrete numerical models for nonlinear analysis of masonry shear walls. Construction and Building Materials 149:296–314. doi:10.1016/j.conbuildmat.2017.05.130.
  • Quagliarini, E., G. Maracchini, and F. Clementi. 2017. Uses and limits of the Equivalent Frame Model on existing unreinforced masonry buildings for assessing their seismic risk: A review. Journal of Building Engineering 10:166–82. doi:10.1016/j.jobe.2017.03.004.
  • Raka, E., E. Spacone, V. Sepe, and G. Camata. 2015. Advanced frame element for seismic analysis of masonry structures: Model formulation and validation. Earthquake Engineering & Structural Dynamics 44 (14):2489–506. doi:10.1002/eqe.2594.
  • Ramm, E. 1982. The Riks/Wempner approach – an extension of the displacement control method in nonlinear analysis. Recent Advances in Non-Linear Computational Mechanics, ed. E. Hinton et al., 63–86. Swansea: Pineridge Press.
  • Rashid, Y. R. 1968. Ultimate strength analysis of prestressed concrete pressure vessels. Nuclear Engineering and Design 7 (4):334–44. doi:10.1016/0029-5493(68)90066-6.
  • Roca, P., M. Cervera, and G. Gariup. 2010. Structural analysis of masonry historical constructions. Classical and advanced approaches. Archives of Computational Methods in Engineering 17 (3):299–325. doi:10.1007/s11831-010-9046-1.
  • Salvatori, L., and P. Spinelli. 2018. A continuum-discrete multiscale model for in-plane mechanical modeling of masonry panels. Journal of Multiscale Modelling 9 (3):1840004. doi:10.1142/S1756973718400048.
  • Sánchez, G., J. Ignacio, D. B. Orts, A. G. Sánchez, and S. Ivorra. 2018. Masonry micromodels using high order 3D elements. Procedia Structural Integrity 11: 428–35. doi:10.1016/j.prostr.2018.11.055.
  • Schweizerhof, K. H., and P. Wriggers. 1986. Consistent linearization for path following methods in nonlinear FE analysis. Computer Methods in Applied Mechanics and Engineering 59 (3):261–79. doi:10.1016/0045-7825(86)90001-0.
  • Shah, N., and D. P. Abrams. 1992. Cyclic load testing of unreinforced masonry walls. Report no. 92-26-10. Urbana, IL: Advanced Construction Technology Center, Newmark Civil Engineering Laboratory, Department of Civil Engineering, University of Illinois at Urbana-Champaign.
  • Siano, R., P. Roca, G. Camata, L. Pelà, V. Sepe, E. Spacone, and M. Petracca. 2018. Numerical investigation of non-linear equivalent-frame models for regular masonry walls. Engineering Structures 173:512–29. doi:10.1016/j.engstruct.2018.07.006.
  • Soltani, M., A. Xuehui, and K. Maekawa. 2003. Computational model for post cracking analysis of RC membrane elements based on local stress–Strain characteristics. Engineering Structures 25 (8):993–1007. doi:10.1016/S0141-0296(03)00042-7.
  • Spacone, E., F. C. Filippou, and F. F. Taucer. 1996. Fibre beam–column model for non-linear analysis of r/c frames: part I. formulation. Earthquake Engineering & Structural Dynamics 25 (7):711–25. doi:10.1002/(SICI)1096-9845(199607)25:7<711::AID-EQE576>3.0.CO;2-9.
  • Thai, H.-T., and S.-E. Kim. 2009. Large deflection inelastic analysis of space trusses using generalized displacement control method. Journal of Constructional Steel Research 65 (10):1987–94. doi:10.1016/j.jcsr.2009.06.012.
  • Toti, J., V. Gattulli, and E. Sacco. 2015. Nonlocal damage propagation in the dynamics of masonry elements. Computers & Structures 152:215–27. doi:10.1016/j.compstruc.2015.01.011.
  • Turnšek, V., and F. Čačovič. 1971. Some experimental results on the strength of brick masonry walls. In Proceedings of 2nd International Brick Masonry Conference, Stoke-on-Trent, 149–56.
  • Vanin, A., and P. Foraboschi. 2009. Journal-modelling of masonry panels by truss analogy–part 1. Masonry International 22 (1):1.
  • Vanin, F., D. Zaganelli, A. Penna, and K. Beyer. 2017. Estimates for the stiffness, strength and drift capacity of stone masonry walls based on 123 quasi-static cyclic tests reported in the literature. Bulletin of Earthquake Engineering 15 (12):5435–79. doi:10.1007/s10518-017-0188-5.
  • Vecchio, F. J., and M. P. Collins. 1986. The modified compression-field theory for reinforced concrete elements subjected to shear. Journal of the American Concrete Institute 83 (2):219–31.
  • Vulcano, A., V. V. Bertero, and V. Colotti. 1988. Analytical modeling of RC structural walls. Proceedings of the 9th World Conference on Earthquake Engineering, vol. 6, Tokyo/Kyoto, Japan, 41–6.
  • Wilding, B. V., and K. Beyer. 2017. Force–Displacement response of in-plane loaded unreinforced brick masonry walls: The Critical Diagonal Crack model. Bulletin of Earthquake Engineering 15 (5):2201–44. doi:10.1007/s10518-016-0049-7.
  • Yaghoubifar, A. 2008. Experimental and analytical investigation on the behavior of strengthened brick walls by steel bars and concrete. M. Sc. thesis, Dept. of Civil Engineering, Tarbiat Modares Univ., Tehran, Iran.
  • Zhuge, Y., D. Thambiratnam, and J. Corderoy. 1998. Nonlinear dynamic analysis of unreinforced masonry. Journal of Structural Engineering 124 (3):270–77. doi:10.1061/(ASCE)0733-9445(1998)124:3(270).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.