Publication Cover
International Journal of Architectural Heritage
Conservation, Analysis, and Restoration
Volume 15, 2021 - Issue 9
360
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Assessment of Seismic Performance of Three-Story Masonry Stone Pagoda by Dynamic Centrifuge Test and Simulation Analysis

ORCID Icon, , , ORCID Icon &
Pages 1213-1226 | Received 12 Mar 2019, Accepted 26 Aug 2019, Published online: 18 Sep 2019

References

  • ANSYS Academic Research Mechanical, Release 17.0.
  • Betti, M., L. Galano, and A. Vignoli. 2015. Time-history seismic analysis of masonry buildings: A comparison between two non-linear modelling approaches. Buildings 5 (2):597–621. doi:10.3390/buildings5020597.
  • Dogangun, A., R. Acar, H. Sezen, and R. Livaoglu. 2008. Investigation of dynamic response of masonry minaret structures. Bulletin of Earthquake Engineering 6 (3):505–17. doi:10.1007/s10518-008-9066-5.
  • Fukumoto, Y., J. Yoshida, H. Sakaguchi, and A. Murakami. 2014. The effects of block shape on the seismic behavior of dry-stone masonry retaining walls: A numerical investigation by discrete element modeling. Soils and Foundations 54 (6):1117–26. doi:10.1016/j.sandf.2014.11.007.
  • Google maps. https://www.google.co.kr/maps/place/Gyeongju-si,+Gyeongsangbuk-do/@36.0449876,127.5696931,7z/data=!4m5!3m4!1s0x35664e46f80d031d:0x371596eecfd0c809!8m2!3d35.8561719!4d129.2247477?hl=en.
  • Hanazato, T., C. Minowa, Y. Niitsu, K. Nitto, N. Kawai, H. Maekawa, and M. Morii. 2010. Seismic and wind performance of five-storied pagoda of timber heritage structure. Advanced Materials Research 133–134:79–95. doi:https://10.4028/www.scientific.net/AMR.133-134.79.
  • Hansapinyo, C. 2014. Seismic performances of brick masonry inverted bell-shaped Chedi. APCBEE Procedia 9 (Icbee 2013):217–21. doi:10.1016/j.apcbee.2014.01.039.
  • Li, S., Y. Zhao, and Y. Liu. 2014. Numerical simulation of seismic damage evolution of ancient masonry pagodas in China. Computer Modelling and New Technologies 18 (4):198–203.
  • Mai, K. Q., S.-M. Lee, and K. Lee. 2018. Assessment of historic stone arch bridge characterisation: Experiments and numerical model. Proceedings of the Institution of Civil Engineers - Structures and Buildings, 1–10. doi:10.1680/jstbu.18.00014.
  • Marino, M., F. Neri, A. De Maria, and A. Borri. 2014. Experimental data of friction coefficients for some types of masonry and its correlation with an Index of Quality Masonry (IQM). Second European Conference on Earthquake Engineering and Seismology, Istanbul, 1–12.
  • Mistler, M., C. Butenweg, and K. Meskouris. 2006. Modelling methods of historic masonry buildings under seismic excitation. Journal of Seismology 10 (4):497–510. doi:10.1007/s10950-006-9033-z.
  • Noh, J., H.-J. Kim, S.-H. Lee, S.-H. Cho, and L. Chung. 2008. Static stability evaluation of stone pagoda considering frictional characteristics of stone blocks. WSEAS International Conference on Engineering Mechanics, Structures, Engineering Geology (EMESEG ’08), Heraklion, Crete Island, Greece Static, 385–92.
  • NRICH (National Research Institute of Cultural Heritage). 2007. Stone stupa of Gyeongsangbuk-do I (in Korean).
  • Park, H. J., and D. S. Kim. 2013. Centrifuge modelling for evaluation of seismic behaviour of stone masonry structure. Soil Dynamics and Earthquake Engineering 53:187–95. doi:10.1016/j.soildyn.2013.06.010.
  • Park, H. J., and D. S. Kim. 2015. Evaluation of seismic behaviour of Cheomseongdae using dynamic centrifuge model test. Earthquake Engineering and Structural Dynamics 44 (5):695–711. doi:10.1002/eqe.2482.
  • Park, H. J., D. S. Kim, and Y. W. Choo. 2014. Evaluation of the seismic response of stone pagodas using centrifuge model tests. Bulletin of Earthquake Engineering 12 (6):2583–606. doi:10.1007/s10518-014-9598-9.
  • Park, H. J., J.-G. Ha, S.-H. Kim, and -S.-S. Jo. 2019. Seismic performance of ancient masonry structures in Korea rediscovered in 2016 M 5.8 Gyeongju earthquake. Sustainability 11:1565. doi:10.3390/su1061565.
  • Park, H. J., J.-G. Ha, S.-Y. Kwon, M.-G. Lee, and D. S. Kim. 2017. Investigation of the dynamic behaviour of a storage tank with different foundation types focusing on the soil-foundation-structure interactions using centrifuge model tests. Earthquake Engineering and Structural Dynamics 46 (14):2301–16. doi:10.1002/eqe.2905.
  • Preciado, A. 2015. Seismic vulnerability and failure modes simulation of ancient masonry towers by validated virtual finite element models. Engineering Failure Analysis 57:72–87. doi:10.1016/j.engfailanal.2015.07.030p.
  • Preciado, A., A. Orduña, G. Bartoli, and H. Budelmann. 2015. Façade seismic failure simulation of an old cathedral in Colima, Mexico by 3D limit analysis and nonlinear finite element method. Engineering Failure Analysis 49:20–30. doi:10.1016/j.engfailanal.2014.12.003.
  • Preciado, A., G. Bartoli, and A. Ramirez-Gaytan. 2017. Earthquake protection of the Torre Grossa medieval tower of San Gimignano, Italy by vertical external prestressing. Engineering Failure Analysis 71::31–42. doi:10.1016/j.engfailanal.2016.11.005.
  • Preciado, A., H. Budelmann, and G. Bartoli. 2016. Earthquake protection of colonial bell towers in Colima, Mexico with externally prestressed FRPs. International Journal of Architectural Heritage 10 (4):499–515. doi:10.1080/15583058.2014.1003624.
  • Preciado, A., and S. T. Sperbeck. 2019. Failure analysis and performance of compact and slender carved stone walls under compressive and seismic loading by the FEM approach. Engineering Failure Analysis 96::508–24. doi:10.1016/j.engfailanal.2018.11.009.
  • Preciado, A., S. T. Sperbeck, and A. Ramirez-Gaytan. 2016. Seismic vulnerability enhancement of medieval and masonry bell towers externally prestressed with unbonded smart tendons. Engineering Structures 122::50–61. doi:10.1016/j.engstruct.2016.05.007.
  • Schofield, A. N. 1980. Cambridge geotechnical centrifuge operations. Twentieth Rankine Lect Geotech 30 (3):227–68.
  • Taylor, R. N. 2005. Geotechnical centrifuge technology. . London, UK: Blackie Academic and Professional.
  • Yuan, J., Y. Fang, Y. Shi, W. Chen, and J. Wang. 2013. Finite element analysis model of Ying-Xing timber pagoda based on the conformation character and damaged condition. Ingegneria Sismica 30 (4):99–108.
  • Yuan, J. L., J. Wang, and H. Z. Lv. 2007. Analysis and simulation on unequal settlement of ancient masonry pagodas. WIT Transactions on the Built Environment 95:459–67. doi:10.2495/STR070431.
  • Yuan, J. L., L. Rong, and H. Fan. 2014. Experimental research on dynamic behavior of the masonry pagoda based on soil-structure interaction. Advanced Materials Research 1079–1080:212–19. doi:http://10.4028/www.scientific.net/AMR.1079-1080.212

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.