Publication Cover
International Journal of Architectural Heritage
Conservation, Analysis, and Restoration
Volume 15, 2021 - Issue 9
688
Views
12
CrossRef citations to date
0
Altmetric
Research Article

Nanoparticles Applied to Stone Buildings

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1320-1335 | Received 30 Jul 2019, Accepted 23 Sep 2019, Published online: 29 Sep 2019

References

  • Aflori, M., B. Simionescu, I. E. Bordianu, L. Sacarescu, C. D. Varganici, F. Doroftei, A. Nicolescu, and M. Olaru. 2013. Silsesquioxane-based hybrid nanocomposites with methacrylate units containing titania and/or silver nanoparticles as antibacterial/antifungal coatings for monumental stones. Materials Science and Engineering B: Solid-State Materials for Advanced Technology 178 (19):1339–46. doi:10.1016/j.mseb.2013.04.004.
  • Ambrosi, M., L. Dei, R. Giorgi, C. Neto, and P. Baglioni. 2001. Stable dispersions of Ca(OH)2 in aliphatic alcohols: Properties and application in cultural heritage conservation. Progress in Colloid and Polymer Science 118:68–72. doi:10.1007/3-540-45725-9_15.
  • ArteLab, S. L. 2013. Ensayos con hidrofugantes en planos horizontales. Informe de resultados de los trabajos realizados en las fábricas de piedra de paramentos posteriores entre las torres de la fachada occidental de la Catedral de Santiago de Compostela [Tests with water repellent in horizontal planes. Result report of the work carried out in the stone walls placed between the towers of the Western facade of the Cathedral of Santiago de Compostela].
  • Baglioni, P., D. Chelazzi, R. Giorgi, E. Carretti, N. Toccafondi, and Y. Jaidar. 2014. Commercial Ca(OH)2 nanoparticles for the consolidation of immovable works of art. Applied Physics A: Materials Science and Processing 114 (3):723–32. doi:10.1007/s00339-013-7942-6.
  • Banach, M., and J. Pulit-Prociak. 2016. Synthesis, characteristics, and biocidal activity of silver nanoparticles. Fabrication and Self-Assembly of Nanobiomaterials 1:367–99. Elsevier. doi:10.1016/B978-0-323-41533-0.00012-X.
  • Becerra, J., A. P. Zaderenko, M. J. Sayagués, R. Ortiz, and P. Ortiz. 2018. Synergy achieved in silver-TiO2 nanocomposites for the inhibition of biofouling on limestone. Building and Environment 141 (August):80–90. doi:10.1016/j.buildenv.2018.05.020.
  • Becerra, J., A. P. Zaderenko, and P. Ortiz. 2017. Silver/dioxide titanium nanocomposites as biocidal treatments on limestones. Ge-Conservación 11 (Special Issue YOCOCU 2016):141–48.
  • Becerra, J., M. P. Mateo, P. Ortiz, G. Nicolás, and A. P. Zaderenko. 2019a. Evaluation of the applicability of nano-biocide treatments on limestones used in cultural heritage. Journal of Cultural Heritage 38 (July):126–35. doi:10.1016/j.culher.2019.02.010.
  • Becerra, J., P. Ortiz, A. P. Zaderenko, and I. Karapanagiotis. 2019c May. Assessment of nanoparticles/nanocomposites to inhibit micro-algal fouling on limestone façades. Building Research & Information 1–11. doi:10.1080/09613218.2019.1609233.
  • Becerra, J., P. Ortiz, J. M. Martín, and A. P. Zaderenko. 2019b. Nanolimes doped with quantum dots for stone consolidation assessment. Construction and Building Materials 199 (February):581–93. doi:10.1016/j.conbuildmat.2018.12.077.
  • Bellissima, F., M. Bonini, R. Giorgi, P. Baglioni, G. Barresi, G. Mastromei, and B. Perito. 2014. Antibacterial activity of silver nanoparticles grafted on stone surface. Environmental Science and Pollution Research 21 (23):13278–86. doi:10.1007/s11356-013-2215-7.
  • Benavente, D., A. M. Bernabéu, and J. C. Cañaveras. 2004. Estudio de propiedades físicas de las rocas. [Study of the phycical properties of the stones]. Enseñanza De Las Ciencias De La Tierra 12 (1):62–68.
  • Borsoi, G., B. Lubelli, R. van Hees, R. Veiga, and A. Santos Silva. 2016. Optimization of nanolime solvent for the consolidation of coarse porous limestone. Applied Physics A 122 (9):846. doi:10.1007/s00339-016-0382-3.
  • Borsoi, G., B. Lubelli, R. van Hees, R. Veiga, and A. Santos Silva. 2017. Evaluation of the effectiveness and compatibility of nanolime consolidants with improved properties. Construction and Building Materials 142:385–94. doi:10.1016/j.conbuildmat.2017.03.097.
  • Borsoi, G., B. Lubelli, R. van Hees, R. Veiga, and A. Santos Silva. 2018. Application protocol for the consolidation of calcareous substrates by the use of nanolimes: From laboratory research to practice. Restoration of Buildings and Monuments 22 (4–6):99–109. doi:10.1515/rbm-2016-0008.
  • Borsoi, G., R. Van Hees, B. Lubelli, R. Veiga, and A. Santos Silva. 2015. Nanolime deposition in Maastricht limestone : Back-migration or accumulation at the absorption surface? In EMABM 2015: Proceedings of the 15th Euroseminar on Microscopy Applied to Building Materials, Delft, The Netherlands, 17-19 June 2015, 77–86. Delft: Delft University of Technology.
  • Calvo, J. P., and M. Regueiro. 2010. Carbonate rocks in the Mediterranean region - from classical to innovative uses of building stone. Geological Society, London, Special Publications 331 (1):27–35. doi:10.1144/sp331.3.
  • Camerini, R., G. Poggi, D. Chelazzi, F. Ridi, R. Giorgi, and P. Baglioni. 2019. The carbonation kinetics of calcium hydroxide nanoparticles: A boundary nucleation and growth description. Journal of Colloid and Interface Science 547:370–81. doi:10.1016/j.jcis.2019.03.089.
  • Caneva, G., M. P. Nugari, and O. Salvadori. 2008. Control of biodeterioration and bioremediation techniques. In Plant BIOLOGY for cultural heritage : Biodeterioration and conservation, eds. G. Caneva, M. P. Nugari, and O. Salvadori, 309–46. Getty Conservation Institute.
  • Caneva, G., M. P. Nugari, and O. Salvadori. 1991. Biology in the conservation of works of art. Edited by ICCROM. Vol. 35. Rome.
  • Cao, G. 2004. Nanostructures and nanomaterials. Synthesis, properties and applications. Imperial College. doi:10.1142/p305.
  • Carrillo-González, R., M. A. Martínez-Gómez, M. C. González-Chávez, and J. C. Mendoza. 2015. Inhibition of microorganisms involved in deterioration of an archaeological site by silver nanoparticles produced by a green synthesis method. Science of the Total Environment 565:872–81. doi:10.1016/j.scitotenv.2016.02.110.
  • Cepin, M., G. Hribar, S. Caserman, and Z. Crnjak Orel. 2015. Morphological impact of zinc oxide particles on the antibacterial activity and human epithelia toxicity. Materials Science and Engineering C 52:204–11. doi:10.1016/j.msec.2015.03.053.
  • Chelazzi, D., G. Poggi, Y. Jaidar, N. Toccafondi, R. Giorgi, and P. Baglioni. 2013. Hydroxide nanoparticles for cultural heritage: Consolidation and protection of wall paintings and carbonate materials. Journal of Colloid and Interface Science 392 (1):42–49. doi:10.1016/j.jcis.2012.09.069.
  • Costa, D., and J. Delgado. 2013. Consolidation of a porous limestone with nanolime. 12th International Congress on the Deterioration and Conservation of Stone, New York (USA), November 2012.
  • Coutinho, M. L., A. Z. Miller, P. M. Martin-Sanchez, J. Mirão, A. Gomez-Bolea, B. Machado-Moreira, L. Cerqueira-Alves, V. Jurado, C. Saiz-Jimenez, A. Lima, et al. 2016. A multiproxy approach to evaluate biocidal treatments on biodeteriorated majolica glazed tiles. Environmental Microbiology 18 (12):4794–816. doi:10.1111/1462-2920.13380.
  • Daniele, V., G. Taglieri, and R. Quaresima. 2008. The nanolimes in cultural heritage conservation: Characterisation and analysis of the carbonatation process. Journal of Cultural Heritage 9 (3):294–301. doi:10.1016/j.culher.2007.10.007.
  • De Ferri, L., P. P. Lottici, A. Lorenzi, A. Montenero, and E. Salvioli-Mariani. 2011. Study of silica nanoparticles - polysiloxane hydrophobic treatments for stone-based monument protection. Journal of Cultural Heritage 12 (4):356–63. doi:10.1016/j.culher.2011.02.006.
  • De Rosario, I., F. Elhaddad, A. Pan, R. Benavides, T. Rivas, and M. J. Mosquera. 2015. Effectiveness of a novel consolidant on granite: Laboratory and in situ results. Construction and Building Materials 76:140–49. doi:10.1016/j.conbuildmat.2014.11.055.
  • Dei, L., and B. Salvadori. 2006. Nanotechnology in cultural heritage conservation: Nanometric slaked lime saves architectonic and artistic surfaces from decay. Journal of Cultural Heritage 7 (2):110–15. doi:10.1016/j.culher.2006.02.001.
  • Doehne, E., and C. A. Price. 2010. Stone conservation. An overview of current research. biodiversity and conservation, Vol. 26, 2nd ed. Los Angeles: The Getty Conservation Institute.
  • Essa, A. M. M., and M. K. Khallaf. 2014. Biological nanosilver particles for the protection of archaeological stones against microbial colonization. International Biodeterioration and Biodegradation 94:31–37. doi:10.1016/j.ibiod.2014.06.015.
  • Eyssautier-Chuine, S., N. Vaillant-Gaveau, M. Gommeaux, C. Thomachot-Schneider, J. Pleck, and G. Fronteau. 2015. Efficacy of different chemical mixtures against green algal growth on limestone: A case study with Chlorella Vulgaris. International Biodeterioration & Biodegradation 103:59–68. doi:10.1016/j.ibiod.2015.02.021.
  • Facio, D. S., J. A. Ordoñez, M. L. A. Gil, L. A. M. Carrascosa, and M. J. Mosquera. 2018. New consolidant-hydrophobic treatment by combining SiO2 composite and fluorinated alkoxysilane: Application on decayed biocalcareous stone from an 18th century cathedral. Coatings 8 (5):170. doi:10.3390/coatings8050170.
  • Falchi, L., E. Balliana, F. C. Izzo, L. Agostinetto, and E. Zendri. 2013. Distribution of nanosilica dispersions in Lecce stone. Sciences at Ca’ Foscari 1 (January):40–46. doi:10.7361/SciCF-441.
  • Favaro, M., R. Mendichi, F. Ossola, S. Simon, P. Tomasin, and P. A. Vigato. 2007. Evaluation of polymers for conservation treatments of outdoor exposed stone monuments. Part II: Photo-oxidative and salt-induced weathering of acrylic-silicone mixtures. Polymer Degradation and Stability 92 (3):335–51. doi:10.1016/j.polymdegradstab.2006.12.008.
  • Fonseca, A. J., F. Pina, M. F. Macedo, N. Leal, A. Romanowska-Deskins, L. Laiz, A. Gómez-Bolea, and C. Saiz-Jimenez. 2010. Anatase as an alternative application for preventing biodeterioration of mortars: Evaluation and comparison with other biocides. International Biodeterioration and Biodegradation 64 (5):388–96. doi:10.1016/j.ibiod.2010.04.006.
  • Foster, H. A., I. B. Ditta, S. Varghese, and A. Steele. 2011. Photocatalytic disinfection using titanium dioxide: Spectrum and mechanism of antimicrobial activity. Applied Microbiology and Biotechnology 90 (6):1847–68. doi:10.1007/s00253-011-3213-7.
  • Franzoni, E., B. Pigino, and C. Pistolesi. 2013. Ethyl silicate for surface protection of concrete: Performance in comparison with other inorganic surface treatments. Cement and Concrete Composites 44:69–76. doi:10.1016/j.cemconcomp.2013.05.008.
  • Galetti, G., L. Lazzarini, and M. Magetti. 1992. A first characterization of the most important granites used in the antiquity. In Ancient stone: Quarrying, trade and provenence, eds. M. Waelkens, N. Herz, and L. Moens, 167–77. Leuven: University Press.
  • Gambino, M., M. A. A. Ahmed, F. Villa, and F. Cappitelli. 2017. Zinc oxide nanoparticles hinder fungal biofilm development in an ancient egyptian tomb. International Biodeterioration & Biodegradation 122:92–99. doi:10.1016/j.ibiod.2017.05.011.
  • Gaylarde, C., M. Ribas Silva, and T. Warscheid. 2003. Microbial impact on building materials: An overview. Materials and Structures 36 (5):342–52. doi:10.1007/BF02480875.
  • Gheno, G., E. Badetti, A. Brunelli, R. Ganzerla, and A. Marcomini. 2018. Consolidation of Vicenza, Arenaria and Istria stones: A comparison between nano-based products and acrylate derivatives. Journal of Cultural Heritage 32:44–52. doi:10.1016/j.culher.2018.02.013.
  • Ginell, W. S., and R. Coffman. 2013. Epoxy resin-consolidated stone: Appearance change on aging. Studies in Conservation 43 (4):242–48.
  • Goffredo, G. B., S. Accoroni, C. Totti, T. Romagnoli, L. Valentini, and P. Munafò. 2017. Titanium dioxide based nanotreatments to inhibit microalgal fouling on building stone surfaces. Building and Environment 112:209–22. doi:10.1016/j.buildenv.2016.11.034.
  • Gomez-Villalba, L. S., P. López-Arce, A. Zornoza, M. Álvarez de Buergo, and R. Fort. 2011. Evaluación del tratamiento de consolidación de dolomías mediante nanopartículas de hidróxido de calcio en condiciones de alta humedad relativa [Evaluation of a consolidation treatment in dolostones by mean of calcium hydroxide nanoparticles in high relative humidity consitions]. Boletín De La Sociedad Española De Cerámica Y Vidrio 50 (2):85–92. doi:10.3989/cyv.122011.
  • Graziani, L., E. Quagliarini, F. Bondioli, and M. D’Orazio. 2014. Durability of self-cleaning TiO2 coatings on rired clay brick façades: Effects of UV exposure and wet & dry cycles. Building and Environment 71:193–203. doi:10.1016/j.buildenv.2013.10.005.
  • Graziani, L., E. Quagliarini, and M. D’Orazio. 2016. The role of roughness and porosity on the self-cleaning and anti-biofouling efficiency of TiO2-Cu and TiO2-Ag nanocoatings applied on fired bricks. Construction and Building Materials 129:116–24. doi:10.1016/j.conbuildmat.2016.10.111.
  • Grossi, C. M., and P. Brimblecombe. 2007. Effect of long-term changes in air pollution and climate on the decay and blackening of european stone buildings. In Geological Society, London, Special Publications, Edited by R. Prikryl, and B. J. Smith, vol. 271(1), The Geological Society of London. 117–30. doi:10.1144/GSL.SP.2007.271.01.13.
  • Gutarowska, B., J. Skora, K. Zduniak, and D. Rembisz. 2012. Analysis of the sensitivity of microorganisms contaminating museums and archives to silver nanoparticles. International Biodeterioration and Biodegradation 68:7–17. doi:10.1016/j.ibiod.2011.12.002.
  • Hansen, E., E. Doehne, J. Fidler, J. Larson, B. Martin, M. Matteini, C. Rodriguez-Navarro, E. S. Pardo, C. Price, A. de Tagle, et al. 2003. A review of selected inorganic consolidants and protective treatments for porous calcareous materials. Studies in Conservation 48 (sup1):13–25. doi:10.1179/sic.2003.48.Supplement-1.13.
  • Heera, P., and S. Shanmugam. 2015. Nanoparticle characterization and application: An overview. International Journal of Current Microbiology and Applied Sciences 4 (8):379–86.
  • Huang, H. L., C. C. Lin, and K. Hsu. 2015. Comparison of resistance improvement to fungal growth on green and conventional building materials by nano-metal impregnation. Building and Environment 93:119–27. doi:10.1016/j.buildenv.2015.06.016.
  • ICOMOS (International Council on Monuments ans Sites). 2008. Illustrated glossary on stone deterioration patterns. Icomos-international documentation centre. Paris, France.
  • Jalali, S. A. H., and A. R. Allafchian. 2016. Assessment of antibacterial properties of novel silver nanocomposite. Journal of the Taiwan Institute of Chemical Engineers 59:506–13. doi:10.1016/j.jtice.2015.08.004.
  • Jang, J., and F. G. Matero. 2018. Performance evaluation of commercial nanolime as a consolidant for friable lime-based plaster. Journal of the American Institute for Conservation 57 (3):95–111. doi:10.1080/01971360.2018.1486126.
  • Kapridaki, C., L. Pinho, M. J. Mosquera, and P. Maravelaki-Kalaitzaki. 2014. Producing photoactive, transparent and hydrophobic SiO2-crystalline TiO2 nanocomposites at ambient conditions with application as self-cleaning coatings. Applied Catalysis B: Environmental 156–57:416–27. doi:10.1016/j.apcatb.2014.03.042.
  • Kapridaki, C., L. Pinho, M. J. Mosquera, and P. Maravelaki-Kalaitzaki. 2017. Producing sefl-cleaning, transparent and hydrophobic SiO2-crystalline TiO2 nanocomposites at ambient conditions for protective and consolidation. Editor: Editor: Junhui He, In Self-cleaning coatings: Structure, fabrication and application, 105–39. The Royal Society of Chemistry. Cambridge, UK.
  • Karak, N. 2019. Fundamentals of nanomaterials and polymer nanocomposites. in nanomaterials and polymer nanocomposites : raw materials to applications, ed. N. Karak. Elsevier. pp: 1–45 doi:10.1016/B978-0-12-814615-6.00001-1
  • Kearton, B., and Y. Mattley. 2008. Laser-induced breakdown spectroscopy: Sparking new applications. Nature Photonics 2 (9):537–40. doi:10.1038/nphoton.2008.173.
  • Khan, I., K. Saeed, and I. Khan. May, 2017. Nanoparticles: Properties, applications and toxicities. Arabian Journal of Chemistry The Authors. doi:10.1016/j.arabjc.2017.05.011.
  • Krauklis, A. E., and A. T. Echtermeyer. 2018. Mechanism of yellowing: Carbonyl formation during hygrothermal aging in a common amine epoxy. Polymers 10 (9):1017. doi:10.3390/polym10091017.
  • Kruk, T., K. Szczepanowicz, J. Stefańska, R. P. Socha, and P. Warszyński. 2015. Synthesis and antimicrobial activity of monodisperse copper nanoparticles. Colloids and Surfaces B: Biointerfaces 128:17–22. doi:10.1016/j.colsurfb.2015.02.009.
  • Kumar, R., and A. V. Kumar. 1999. Biodeterioration of stone in tropical environments : An overview. Getty Conservation Institute.
  • Kumar, V. V., and S. P. Anthony. 2016. Antimicrobial studies of metal and metal oxide nanoparticles. 265–300. doi: 10.1016/B978-0-323-42861-3.00009-1.
  • La Russa, M. F., A. Macchia, S. A. Ruffolo, F. De Leo, M. Barberio, P. Barone, G. M. Crisci, and C. Urzì. 2014. Testing the antibacterial activity of doped TiO2 for preventing biodeterioration of cultural heritage building materials. International Biodeterioration and Biodegradation 96:87–96. doi:10.1016/j.ibiod.2014.10.002.
  • Lanzón, M., V. E. García-Vera, A. J. Tenza-Abril, and V. De Stefano. 2019. Use of image analysis to evaluate surface dispersion and covering performance of nanolime coatings sprayed on heritage material substrates. Applied Surface Science 480 (February):962–68. doi:10.1016/j.apsusc.2019.03.066.
  • Lettieri, M., A. Calia, A. Licciulli, A. E. Marquardt, and R. J. Phaneuf. 2017. Nanostructured TiO2 for stone coating: Assessing compatibility with basic stone’s properties and photocatalytic effectiveness. Bulletin of Engineering Geology and the Environment 76 (1):101–14. doi:10.1007/s10064-015-0820-z.
  • Li, Q., B. Zhang, X. Yang, and Q. Ge. 2018. Deterioration-associated microbiome of stone monuments: Structure, variation, and assembly. In Applied and environmental microbiology, ed. A. J. M. Stams, Vol. 84 (7), 1–19. doi:10.1128/AEM.02680-17.
  • Lin, Y., W. Qiqiang, Z. Xiaoming, W. Zhouping, X. Wenshui, and D. Yuming. 2011. Synthesis of Ag/TiO2 core/shell nanoparticles with antibacterial properties. Bulletin of the Korean Chemical Society 32 (8):2607–10. doi:10.5012/bkcs.2011.32.8.2607.
  • Lok, C.-N., C.-M. Ho, R. Chen, Q.-Y. He, W.-Y. Yu, H. Sun, P. K.-H. Tam, J.-F. Chiu, and C.-M. Che. 2007. Silver nanoparticles: Partial oxidation and antibacterial activities. JBIC Journal of Biological Inorganic Chemistry 12 (4):527–34. doi:10.1007/s00775-007-0208-z.
  • Lungu, M., Ş. Gavriliu, E. Enescu, I. Ion, A. Brătulescu, G. Mihăescu, L. Măruţescu, and M. C. Chifiriuc. 2014. Silver–Titanium dioxide nanocomposites as effective antimicrobial and antibiofilm agents. Journal of Nanoparticle Research 16 (1):2203. doi:10.1007/s11051-013-2203-3.
  • Luo, Y., L. Xiao, and X. Zhang. 2015. Characterization of TEOS/PDMS/HA nanocomposites for application as consolidant/hydrophobic products on sandstones. Journal of Cultural Heritage 16 (4):470–78. doi:10.1016/j.culher.2014.08.002.
  • Maryniak-Piasczynski, E., and G. Ziegenbalg. 2010. Nano-lime as a binder for injection grouts and repair mortars. 2nd Historic Mortars Conference HMC2010 and RILEM TC 203-RHM Final Workshop 22-24 September 2010, Prague, Czech Republic, September: 1159–67.
  • Mateo, M. P., J. Becerra, A. P. Zaderenko, P. Ortiz, and G. Nicolás. 2019. Laser-induced breakdown spectroscopy applied to the evaluation of penetration depth of bactericidal treatments based on silver nanoparticles in limestones. Spectrochimica Acta Part B: Atomic Spectroscopy 152:44–51. doi:10.1016/j.sab.2018.11.010.
  • Matteini, M., S. Rescic, F. Fratini, and G. Botticelli. 2011. Ammonium phosphates as consolidating agents for carbonatic stone materials used in architecture and cultural heritage: Preliminary research. International Journal of Architectural Heritage 5 (6):717–36. doi:10.1080/15583058.2010.495445.
  • Mosquera, M. J., D. M. De Los Santos, A. Montes, and L. Valdez-Castro. 2008. New nanomaterials for consolidating stone. Langmuir 24 (6):2772–78. doi:10.1021/la703652y.
  • Munafò, P., E. Quagliarini, G. B. Goffredo, F. Bondioli, and A. Licciulli. 2014. Durability of nano-engineered TiO2 self-cleaning treatments on limestone. Construction and Building Materials 65:218–31. doi:10.1016/j.conbuildmat.2014.04.112.
  • Munafò, P., G. B. Goffredo, and E. Quagliarini. 2015. TiO2-based nanocoatings for preserving architectural stone surfaces: An overview. Construction and Building Materials 84:201–18. doi:10.1016/j.conbuildmat.2015.02.083.
  • Noeiaghaei, T., N. Dhami, and A. Mukherjee. 2017. Nanoparticles surface treatment on cemented materials for inhibition of bacterial growth. Construction and Building Materials 150:880–91. doi:10.1016/j.conbuildmat.2017.06.046.
  • Nowicka-Krawczyk, P., J. Zelazna-Wieczorek, and T. Koźlecki. 2017. Silver nanoparticles as a control agent against facades coated by aerial algae — A model study of Apatococcus lobatus (green algae). PloS One 12 (8):1–14. doi:10.1371/journal.pone.0183276.
  • Nugari, M. P., and O. Salvadori. 2003. Biocides and treatment of stone: Limitations and future prospects. In Art, biology, and conservation: Biodeterioration of works of art, ed. R. J. Koestler, V. H. Koestler, A. E. Charola, and F. Nieto-Fernandez, 518–35. New York: The Metropolitan Museum of Art.
  • Nuhoglu, Y., E. Oguz, H. Uslu, A. Ozbek, B. Ipekoglu, I. Ocak, and I. Hasenekoglu. 2006. The accelerating effects of the microorganisms on biodeterioration of stone monuments under air pollution and continental-cold climatic conditions in Erzurum, Turkey. Science of the Total Environment 364 (1–3):272–83. doi:10.1016/j.scitotenv.2005.06.034.
  • Okpala, C. C. 2013. Nanocomposites – An overview. International Journal of Engineering Research and Development 8 (11):17–23.
  • Ortiz, R., and P. Ortiz. 2016. Vulnerability index: A new approach for preventive conservation of monuments. International Journal of Architectural Heritage 10 (8):1078–100. doi:10.1080/15583058.2016.1186758.
  • Ortiz, R., P. Ortiz, M. S. Abad, J. M. Martin, M. A. Gomez, and M. A. Vázquez. 2012. Estudios estratigráficos de costras y depósitos en templos del casco histórico de Sevilla [Stratigraphic studies of crusts and deposits in churchs of the historic center of Seville]. Revista PH 83:50–61. doi:10.33349/2012.83.3343.
  • Pal, S., Y. K. Tak, and J. M. Song. 2007. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? a study of the Gram-negative bacterium Escherichia Coli. Applied and Environmental Microbiology 73 (6):1712–20. doi:10.1128/AEM.02218-06.
  • Perreault, F., M. Samadani, and D. Dewez. 2014. Effect of soluble copper released from copper oxide nanoparticles solubilisation on growth and photosynthetic processes of Lemna Gibba L. Nanotoxicology 8 (4):374–82. doi:10.3109/17435390.2013.789936.
  • Pesce, G. L., D. Morgan, D. Odgers, A. Henry, M. Allen, and R. J. Ball. 2013. Consolidation of weathered limestone using nanolime. Proceedings of Institution of Civil Engineers: Construction Materials 166 (4):213–28. doi:10.1680/coma.12.00051.
  • Pinho, L., F. Elhaddad, D. S. Facio, and M. J. Mosquera. 2013. A novel TiO2-SiO2 nanocomposite converts a very friable stone into a self-cleaning building material. Applied Surface Science 275:389–96. doi:10.1016/j.apsusc.2012.10.142.
  • Poggi, G., N. Toccafondi, D. Chelazzi, P. Canton, R. Giorgi, and P. Baglioni. 2016. Calcium hydroxide nanoparticles from solvothermal reaction for the deacidification of degraded waterlogged wood. Journal of Colloid and Interface Science 473:1–8. doi:10.1016/j.jcis.2016.03.038.
  • Quagliarini, E., F. Bondioli, G. B. Goffredo, A. Licciulli, and P. Munafò. 2012b. Smart surfaces for architectural heritage: Preliminary results about the application of TiO2-based coatings on travertine. Journal of Cultural Heritage 13 (2):204–09. doi:10.1016/j.culher.2011.10.002.
  • Quagliarini, E., F. Bondioli, G. B. Goffredo, C. Cordoni, and P. Munafò. 2012a. Self-cleaning and de-polluting stone surfaces: TiO2 nanoparticles for limestone. Construction and Building Materials 37:51–57. doi:10.1016/j.conbuildmat.2012.07.006.
  • Quagliarini, E., L. Graziani, D. Diso, A. Licciulli, and M. D’Orazio. 2018. Is nano-TiO2 alone an effective strategy for the maintenance of stones in cultural heritage? Journal of Cultural Heritage 30:81–91. doi:10.1016/j.culher.2017.09.016.
  • Rai, M., A. Yadav, and A. Gade. 2009. Silver nanoparticles as a new generation of antimicrobials. Biotechnology Advances 27 (1):76–83. doi:10.1016/j.biotechadv.2008.09.002.
  • Rodriguez-Navarro, C., A. Suzuki, and E. Ruiz-Agudo. 2013. Alcohol dispersions of calcium hydroxide nanoparticles for stone conservation. Langmuir 29 (36):11457–70. doi:10.1021/la4017728.
  • Rodriguez-Navarro, C., I. Vettori, and E. Ruiz-Agudo. 2016. Kinetics and mechanism of calcium hydroxide conversion into calcium alkoxides: Implications in heritage conservation using nanolimes. Langmuir 32 (20):5183–94. doi:10.1021/acs.langmuir.6b01065.
  • Rossi, F., and R. De Philippis. 2015. Role of cyanobacterial exopolysaccharides in phototrophic biofilms and in complex microbial mats. Life 5 (2):1218–38. doi:10.3390/life5021218.
  • Ruffolo, S. A., A. Macchia, M. F. La Russa, L. Mazza, C. Urzì, F. De Leo, M. Barberio, and G. M. Crisci. 2013. Marine antifouling for underwater archaeological sites: TiO2 and Ag-doped TiO2. International Journal of Photoenergy 2013:1–6. doi:10.1155/2013/251647.
  • Ruffolo, S. A., M. Ricca, A. Macchia, and M. F. La Russa. 2017. Antifouling coatings for underwater archaeological stone materials. Progress in Organic Coatings 104:64–71. doi:10.1016/j.porgcoat.2016.12.004.
  • Sanjay, S. S., and A. C. Pandey. 2017. A brief manifestation of nanotechnology. In a brief manifestation of nanotechnology, ed. A. K. Pandey, 47–64. Springer, New Delhi, India. doi:10.1007/978-81-322-3655-9
  • Sassoni, E. 2017. Phosphate-based treatments for conservation of stone. RILEM Technical Letters 2:14. doi:10.21809/rilemtechlett.2017.34.
  • Sassoni, E. 2018. Hydroxyapatite and other calcium phosphates for the conservation of cultural heritage: A review. Materials 11:4. doi:10.3390/ma11040557.
  • Sassoni, E., E. Franzoni, B. Pigino, G. W. Scherer, and S. Naidu. 2013. Consolidation of calcareous and siliceous sandstones by hydroxyapatite: Comparison with a TEOS-based consolidant. Journal of Cultural Heritage 14 (3 SUPPL):e103–08. doi:10.1016/j.culher.2012.11.029.
  • Sepeur, S. 2008. Nanotechnology : Technical basics and applications. Hannover (Germany): Vincentz Network.
  • Sterflinger, K., and G. Piñar. 2013. Microbial deterioration of cultural heritage and works of art - tilting at windmills? Applied Microbiology and Biotechnology 97 (22):9637–46. doi:10.1007/s00253-013-5283-1.
  • Subbenaik, S. C. 2016. Physical and chemical nature of nanoparticles. In Plant nanotechnology, 15–27. Eds. Kole, Chittaranjan, Kumar, D. Sakthi, Khodakovskaya, Mariya V. Cham: Springer International Publishing. doi: 10.1007/978-3-319-42154-4_2.
  • Taglieri, G., J. Otero, V. Daniele, G. Gioia, L. Macera, V. Starinieri, and A. E. Charola. 2018. The biocalcarenite stone of Agrigento (Italy): Preliminary investigations of compatible nanolime treatments. Journal of Cultural Heritage 30:92–99. doi:10.1016/j.culher.2017.11.003.
  • Tavares, M., M. R. Veiga, and A. Fragata. 2008. Conservation of old renderings - the consolidation of rendering with loss of cohesion. Conservar Património 8 (8):13–19. doi:10.14568/cp8_3.
  • Vaillant, M., M. T. Doménech, and N. Valentín. 2003. Una mirada hacia la conservación preventiva del patrimonio cultural [an overview to the preventive conservation of the cultural heritage]. In Universidad politécnica de valencia, ed. . Spain: Valencia.
  • Van der Werf, I. D., N. Ditaranto, R. A. Picca, M. C. Sportelli, and L. Sabbatini. 2015. Development of a novel conservation treatment of stone monuments with bioactive nanocomposites. Heritage Science 3 (1):29. doi:10.1186/s40494-015-0060-3.
  • Van Dong, P., C. Ha, L. Binh, and J. Kasbohm. 2012. Chemical synthesis and antibacterial activity of novel-shaped silver nanoparticles. International Nano Letters 2 (1):9. doi:10.1186/2228-5326-2-9.
  • van Hees, R., R. Veiga, and Z. Slížková. 2017. Consolidation of renders and plasters. Materials and Structures 50 (1):65. doi:10.1617/s11527-016-0894-5.
  • Vasanelli, E., A. Calia, M. Masieri, and G. Baldi. 2019. Stone consolidation with SiO2 nanoparticles: Effects on a high porosity limestone. Construction and Building Materials 219:154–63. doi:10.1016/j.conbuildmat.2019.05.169.
  • Vaz, M. F., J. Pires, and A. P. Carvalho. 2008. Effect of the impregnation treatment with Paraloid B-72 on the properties of old Portuguese ceramic tiles. Journal of Cultural Heritage 9 (3):269–76. doi:10.1016/j.culher.2008.01.003.
  • Vicini, S., S. Margutti, G. Moggi, and E. Pedemonte. 2001. In situ copolymerisation of ethylmethacrylate and methylacrylate for the restoration of stone artefacts. Journal of Cultural Heritage 2 (2):143–47. doi:10.1016/S1296-2074(01)01114-1.
  • Webster, A., and E. May. 2006. Bioremediation of weathered-building stone surfaces. Trends in Biotechnology 24 (6):255–60. doi:10.1016/j.tibtech.2006.04.005.
  • Yaşa, I., N. Lkhagvajav, M. Koizhaiganova, E. Çelik, and Ö. Sari. 2012. Assessment of antimicrobial activity of nanosized Ag doped TiO2 colloids. World Journal of Microbiology and Biotechnology 28 (7):2531–39. doi:10.1007/s11274-012-1061-y.
  • Zarzuela, R., I. Moreno-Garrido, J. Blasco, M. L. Almoraima Gil, and M. J. Mosquera. 2018. Evaluation of the effectiveness of CuONPs/SiO2-based treatments for building stones against the growth of phototrophic microorganisms. Construction and Building Materials 187 (October):501–09. doi:10.1016/j.conbuildmat.2018.07.116.
  • Zarzuela, R., M. Carbú, M. L. A. Gil, J. M. Cantoral, and M. J. Mosquera. 2017. CuO/SiO2 nanocomposites: A multifunctional coating for application on building stone. Materials and Design 114:364–72. doi:10.1016/j.matdes.2016.11.009.
  • Zendri, E., G. Biscontin, I. Nardini, and S. Riato. 2007. Characterization and reactivity of silicatic consolidants. Construction and Building Materials 21 (5):1098–06. doi:10.1016/j.conbuildmat.2006.01.006.
  • Zhao, Y., B. Yang, J. Xu, Z. Fu, M. Wu, and F. Li. 2012. Facile synthesis of Ag nanoparticles supported on TiO2 inverse opal with enhanced visible-light photocatalytic activity. Thin Solid Films 520 (9):3515–22. doi:10.1016/j.tsf.2011.12.076.
  • Zornoza-Indart, A., and P. Lopez-Arce. 2016. Silica nanoparticles (SiO2): Influence of relative humidity in stone consolidation. Journal of Cultural Heritage 18:258–70. doi:10.1016/j.culher.2015.06.002.
  • Zornoza-Indart, A., P. Lopez-Arce, N. Leal, J. Simão, and K. Zoghlami. 2016. Consolidation of a Tunisian bioclastic calcarenite: From conventional ethyl silicate products to nanostructured and nanoparticle based consolidants. Construction and Building Materials 116:188–202. doi:10.1016/j.conbuildmat.2016.04.114.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.