Publication Cover
International Journal of Architectural Heritage
Conservation, Analysis, and Restoration
Volume 15, 2021 - Issue 10
275
Views
14
CrossRef citations to date
0
Altmetric
Research Article

In-Plane Shear Behavior of Stone Masonry Panels Strengthened through Grout Injection and Fiber Reinforced Cementitious Matrices

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1375-1394 | Received 20 May 2019, Accepted 30 Sep 2019, Published online: 09 Oct 2019

References

  • ACI 549.4R-13. 2013. Guide to design and construction of externally bonded Fabric-Reinforced Cementitious Matrix (FRCM) systems for repair and strengthening concrete and masonry structures. Farmington Hills, MI: American Concrete Institute.
  • ASTM E519. 2015. ASTM E519/E519M-15 standard test method for diagonal tension (Shear) in masonry assemblages. West Conshohocken, PA: ASTM International. doi:10.1520/E0519_E0519M-15.
  • Augusti, G., M. Ciampoli, and P. Giovenale. 2001. Seismic vulnerability of monumental buildings. Structural Safety 23:253–74. doi:10.1016/S0167-4730(01)00018-2.
  • Babaeidarabad, S., F. De Caso, and A. Nanni. 2014. URM walls strengthened with fabric-reinforced cementitious matrix composite subjected to diagonal compression. Journal of Composites for Construction 18:04013045. doi:10.1061/(ASCE)CC.1943-5614.0000441.
  • Bellini, A., M. Bovo, and C. Mazzotti. 2019. Experimental and numerical evaluation of fiber-matrix interface behavior of different FRCM systems. Composites Part B Engineering 161:411–26. doi:10.1016/j.compositesb.2018.12.115.
  • Bellini, A., S.-K. Shahreza, and C. Mazzotti. 2019. Cyclic bond behavior of FRCM composites applied on masonry substrate. Composites Part B Engineering 169:189–99. doi:10.1016/j.compositesb.2019.04.009.
  • Binda, L. 1995. Role of a RILEM Commitee: Calibration of proposed test methods. Proceedings of the Joint International Workshop proposed by RILEM TC 127-MS and CIB W23, 1–24, Padova, Italy.
  • Binda, L., A. Saisi, and C. Tiraboschi. 2000. Investigation procedures for the diagnosis of historic masonries. Construction and Building Materials 14:199–233. doi:10.1016/S0950-0618(00)00018-0.
  • Binda, L., A. Saisi, and C. Tiraboschi. 2001. Application of sonic tests to the diagnosis of damaged and repaired structures. NDT & E International 34:123–38. doi:10.1016/S0963-8695(00)00037-2.
  • Binda, L., C. Modena, G. Baronio, and S. Abbaneo. 1997. Repair and investigation techniques for stone masonry walls. Construction and Building Materials 11:133–42. doi:10.1016/S0950-0618(97)00031-7.
  • Binda, L., G. Cardani, A. Saisi, and C. Groot. 2005. A classification of structures and masonries for the adequate choice of repair. International RILEM Workshop on Repair Mortars for Historic Masonry, RILEM publications – Pro, Delft, The Netherlands, 67: 20–34.
  • Borri, A., G. Castori, M. Corradi, and E. Speranzini. 2011. Shear behavior of unreinforced and reinforced masonry panels subjected to in situ diagonal compression tests. Construction and Building Materials 12:4403–14. doi:10.1016/j.conbuildmat.2011.01.009.
  • Caggegi, C., F.-G. Carozzi, S. De Santis, F. Fabbrocino, F. Focacci, Ł. Hojdys, E. Lanoye, and L. Zuccarino. 2017. Experimental analysis on tensile and bond properties of PBO and aramid fabric reinforced cementitious matrix for strengthening masonry structures. Composites Part B Engineering 127:175–95. doi:10.1016/j.compositesb.2017.05.048.
  • Calderini, C., S. Cattari, and S. Lagomarsino. 2010. The use of the diagonal compression test to identify the shear mechanical parameters of masonry. Construction and Building Materials 24:677–85. doi:10.1016/j.conbuildmat.2009.11.001.
  • Carozzi, F.-G., A. Bellini, T. D’Antino, G. de Felice, F. Focacci, Ł. Hojdys, L. Laghi, E. Lanoye, F. Micelli, M. Panizza, et al. 2017. Experimental investigation of tensile and bond properties of Carbon-FRCM composites for strengthening masonry elements. Composites Part B Engineering 128:100–19. doi:10.1016/j.compositesb.2017.06.018.
  • Ceci, A.-M., A. Contento, L. Fanale, D. Galeota, V. Gattulli, M. Lepidi, and F. Potenza. 2010. Structural performance of the historic and modern buildings of the University of L’Aquila during the seismic events of April 2009. Engineering Structures 32:1899–924. doi:10.1016/j.engstruct.2009.12.023.
  • CNR-DT 215. 2018. Guide for the design, execution and control of strengthening interventions by means of fiber reinforced composite materials with inorganic matrices (in Italian). Rome, Italy: National Research Council.
  • D’Ayala, D., and E. Speranza. 2003. Definition of collapse mechanisms and seismic vulnerability of historic masonry buildings. Earthquake Spectra 19:479–509. doi:10.1193/1.1599896.
  • de Felice, G., M.-A. Aiello, A. Bellini, F. Ceroni, S. De Santis, E. Garbin, M. Leone, G.-P. Lignola, M. Malena, C. Mazzotti, et al. 2016. Experimental characterization of composite-to-brick masonry shear bond. Materials and Structures 49:2581–96. doi:10.1617/s11527-015-0669-4.
  • de Felice, G., M.-A. Aiello, C. Caggegi, F. Ceroni, S. De Santis, E. Garbin, N. Gattesco, Ł. Hojdys, P. Krajewski, A. Kwiecień, et al. 2018. Recommendation of RILEM technical committee 250-CSM. Test Method for Textile Reinforced Mortar to Substrate Bond Characterization. Materials and Structures 51:95. doi:10.1617/s11527-018-1216-x.
  • EN 1015-11. 2006. EN 1015-11:1999/A1:2006 Methods of test for mortar for masonry - Part 11: Determination of flexural and compressive strength of hardened mortar. Brussels: European Committee for Standardization (CEN).
  • Faella, C., E. Martinelli, E. Nigro, and S. Paciello. 2010. Shear capacity of masonry walls externally strengthened by a cement-based composite material. An Experimental Campaign. Construction and Building Materials 24:84–93. doi:10.1016/j.conbuildmat.2009.08.019.
  • Feo, L., R. Luciano, G. Misseri, and L. Rovero. 2016. Irregular stone masonries: Analysis and strengthening with glass fibre reinforced composites. Composites Part B Engineering 92:84–93. doi:10.1016/j.compositesb.2016.02.038.
  • Ferretti, F., B. Ferracuti, A. Incerti, and C. Mazzotti. 2016. Diagonal compression tests on masonry panels strengthened by FRP and FRCM. In Structural analysis of historical constructions, ed. K. Van Balen, and E. Verstrynge, 1069–76. Leuven, Belgium: CRC Press/Balkema. doi:10.1201/9781315616995-159.
  • Ferretti, F., A. Incerti, B. Ferracuti, and C. Mazzotti. 2017. FRCM strengthened masonry panels: The role of mechanical anchorages and symmetric layouts. Key Engineering Materials 747:334–41. doi:10.4028/www.scientific.net/KEM.747.334.
  • Ferretti, F., A.-R. Tilocca, B. Ferracuti, and C. Mazzotti. 2015. In situ diagonal compression tests on masonry panels strengthened by FRP and FRCM. 12th International Symposium on Fiber Reinforced Polymers for Reinforced Concrete Structures (FRPRCS-12) & 5th Asia-Pacific Conference on Fiber Reinforced Polymers in Structures (APFIS-2015) Joint Conference, Nanjing, China.
  • Frocht, M. 1931. Recent advances in photoelasticity. ASME Transactions 55:135–53.
  • Gattesco, N., C. Amadio, and C. Bedon. 2015. Experimental and numerical study on the shear behavior of stone masonry walls strengthened with GFRP reinforced mortar coating and steel-cord reinforced repointing. Engineering Structures 90:143–57. doi:10.1016/j.engstruct.2015.02.024.
  • Guerreiro, J., J. Proença, J. G. Ferreira, and A. Gago. 2018. Experimental characterization of in-plane behavior of old masonry walls strengthened through the addition of CFRP reinforced render. Composites Part B Engineering 148:14–26. doi:10.1016/j.compositesb.2018.04.045.
  • Incerti, A., A.-R. Tilocca, F. Ferretti, and C. Mazzotti. 2019b. Influence of masonry texture on the shear strength of FRCM reinforced panels. In Structural analysis of historical constructions, ed. R. Aguilar, D. Torrealva, S. Moreira, M.-A. Pando, and L.-F. Ramos. RILEM Bookseries (18): 1623–21. Cham: Springer. doi:10.1007/978-3-319-99441-3_174.
  • Incerti, A., A. Vasiliu, B. Ferracuti, and C. Mazzotti. 2015. Uniaxial compressive tests on masonry columns confined by FRP and FRCM. 12th International Symposium on Fiber Reinforced Polymers for Reinforced Concrete Structures (FRPRCS-12) & 5th Asia-Pacific Conference on Fiber Reinforced Polymers in Structures (APFIS-2015) Joint Conference, Nanjing, China.
  • Incerti A., F. Ferretti, and C. Mazzotti. 2019b. FRCM strengthening systems efficiency on the shear behavior of pre-damaged masonry panels: An experimental study. Journal of Building Pathology and Rehabilitation 4:1–13. doi:10.1007/s41024-019-0053-9.
  • Incerti, A., M. Santandrea, C. Carloni, and C. Mazzotti. 2017. Destructive In Situ tests on masonry arches strengthened with FRCM composite materials. Key Engineering Materials 747:567–73. doi:10.4028/www.scientific.net/KEM.747.567.
  • Indirli, M., L.-A. S. Kouris, A. Formisano, R.-P. Borg, and F.-M. Mazzolani. 2013. Seismic damage assessment of unreinforced masonry structures after the Abruzzo 2009 Earthquake: The case study of the historical centers of L’Aquila and Castelvecchio Subequo. International Journal of Architectural Heritage 7:536–78. doi:10.1080/15583058.2011.654050.
  • Jorne, F., F.-M.-A. Henriques, and L.-G. Baltazar. 2014. Evaluation of consolidation of grout injection with ultrasonic tomography. Construction and Building Materials 66:494–506. doi:10.1016/j.conbuildmat.2014.05.095.
  • Leone, M., M.-A. Aiello, A. Balsamo, F.-G. Carozzi, F. Ceroni, M. Corradi, M. Gams, E. Garbin, N. Gattesco, P. Krajewski, et al. 2017. Glass fabric reinforced cementitious matrix: Tensile properties and bond performance on masonry substrate. Composites Part B Engineering 127:196–214. doi:10.1016/j.compositesb.2017.06.028.
  • Lignola, G.-P., C. Caggegi, F. Ceroni, S. De Santis, P. Krajewski, P.-B. Lourenço, M. Morganti, C. Papanicolaou, C. Pellegrino, A. Prota, et al. 2017. Performance assessment of basalt FRCM for retrofit applications on masonry. Composites Part B Engineering 128:1–18. doi:10.1016/j.compositesb.2017.05.003.
  • Luso, E., and P.-B. Lourenço. 2016. Experimental characterization of commercial lime based grouts for stone masonry consolidation. Construction and Building Materials 102:216–25. doi:10.1016/j.conbuildmat.2015.10.096.
  • Miltiadou-fezans, A., E. Vintzileou, E. Papadopoulou, and A. Kalagri. 2006. Mechanical properties of three-leaf stone masonry after grouting. In Structural analysis of historical constructions, ed. P.-B. Lourenço, P. Roca, and C. Modena, 791–98, New Delhi, India: Macmillan.
  • Miranda, L., J. Milosevic, and R. Bento. 2017. Cyclic behavior of stone masonry walls strengthened by grout injection. Materials and Structures 50:47. doi:10.1617/s11527-016-0911-8.
  • NTC 2018, D.M. 2018. Italian Building Code (in Italian), Italian Ministry of Infrastructure and Transport, D.M. January 17. Rome, Italy: Italian Ministry of Infrastructure and Transport.
  • NTC 2018, D.M. 2019. Italian Building Code  Commentary (in Italian), Italian Ministry of Infrastructure and Transport, D.M. January 21. Rome, Italy: Italian Ministry of Infrastructure and Transport.
  • Papanicolaou, C., T. Triantafillou, and M. Lekka. 2011. Externally bonded grids as strengthening and seismic retrofitting materials of masonry panels. Construction and Building Materials 25:504–14. doi:10.1016/j.conbuildmat.2010.07.018.
  • Parisi, F., I. Iovinella, A. Balsamo, N. Augenti, and A. Prota. 2013. In-plane behavior of tuff masonry strengthened with inorganic matrix–Grid composites. Composites Part B Engineering 45:1657–66. doi:10.1016/j.compositesb.2012.09.068.
  • Penna, A. 2015. Seismic assessment of existing and strengthened stone-masonry buildings: Critical issues and possible strategies. Bulletin of Earthquake Engineering 13:1051–71. doi:10.1007/s10518-014-9659-0.
  • RILEM TC – LUMB6. 1991. Diagonal tensile strength tests of small wall specimens. RILEM Publications SARL.
  • Santandrea, M., I.-A.-O. Imohamed, C. Carloni, C. Mazzotti, S. de Miranda, F. Ubertini, and M. Savoia. 2016. A study of the debonding mechanism in steel and basalt FRCM-masonry joints. In Brick and Block Masonry:Trends, Innovations and Challenges, ed. by Modena, da Porto & Valluzzi. London: Taylor & Francis Group.
  • Schuller, M., M. Berra, R. Atkinson, and L. Binda. 1997. Acoustic tomography for evaluation of unreinforced masonry. Construction and Building Materials 11:199–204. doi:10.1016/S0950-0618(97)00038-X.
  • Silva, B., M. Dalla Benetta, F. Da Porto, and C. Modena. 2014. Experimental assessment of in-plane behavior of three-leaf stone masonry walls. Construction and Building Materials 53:149–61. doi:10.1016/j.conbuildmat.2013.11.084.
  • Valluzzi, M.-R., E. Cescatti, G. Cardani, L. Cantini, L. Zanzi, C. Colla, and F. Casarin. 2018. Calibration of sonic pulse velocity tests for detection of variable conditions in masonry walls. Construction and Building Materials 192:272–86. doi:10.1016/j.conbuildmat.2018.10.073.
  • Vintzileou, E.-N. 2007. Grouting of three-leaf masonry: Experimental results and prediction of mechanical properties. Evoluzione Nella Sperimentazione per Le Costruzioni 171–90.
  • Vintzileou, E.-N., C. Mouzakis, C.-E. Adami, and L. Karapitta. 2015. Seismic behavior of three-leaf stone masonry buildings before and after interventions: Shaking table tests on a two-storey masonry model. Bulletin of Earthquake Engineering 13:3107–33. doi:10.1007/s10518-015-9746-x.
  • Yokel, F.-Y., and S.-G. Fattal. 1976. A Failure hypothesis for masonry shearwalls. Journal of Structural Divisions - ASCE 102:515–32.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.