465
Views
33
CrossRef citations to date
0
Altmetric
Research Article

Advanced Seismic Assessment of Four Masonry Bell Towers in Italy after Operational Modal Analysis (OMA) Identification

& ORCID Icon
Pages 157-186 | Received 10 Sep 2019, Accepted 22 Nov 2019, Published online: 23 Dec 2019

References

  • ABAQUS. 2014. Theory manual, version 6.14. Simulia place: Providence, Rhode Island, US.
  • Abruzzese, D., L. Miccoli, and J. Yuan. 2009. Mechanical behavior of leaning masonry Huzhu Pagoda. Journal of Cultural Heritage 10 (4):480–86. doi:10.1016/j.culher.2009.02.004.
  • Acito, M., M. Bocciarelli, C. Chesi, and G. Milani. 2014. Collapse of the clock tower in finale emilia after the may 2012 emilia romagna earthquake sequence: numerical insight. Engineering Structures 72:70-91. doi: 10.1016/j.engstruct.2014.04.026.
  • Anzani, A., L. Binda, A. Carpinteri, S. Invernizzi, and G. Lacidogna. 2010. A multilevel approach for the damage assessment of Historic masonry towers. Journal of Cultural Heritage 11 (4):459–70. doi:10.1016/j.culher.2009.11.008.
  • Artioli, E., R. Battaglia, and A. Tralli. 2013. Effects of May 2012 Emilia earthquake on industrial buildings of early ’900 on the Po river line. Engineering Structures. 56 (May 2012):1220–33. Elsevier Ltd. doi:10.1016/j.engstruct.2013.06.026.
  • Baraldi, D., E. Reccia, and A. Cecchi. 2018. In plane loaded masonry walls: DEM and FEM/DEM models. A critical review. Meccanica 53 (7):1613–28. doi:10.1007/s11012-017-0704-3.
  • Bartoli, G., M. Betti, and A. Vignoli. 2016. A numerical study on seismic risk assessment of historic masonry towers: A case study in San Gimignano. Bulletin of Earthquake Engineering 14 (6):1475–518. doi:10.1007/s10518-016-9892-9.
  • Bartoli, G., M. Betti, A. M. Marra, and S. Monchetti. 2017a. Semiempirical formulations for estimating the main frequency of slender masonry towers. Journal of Performance of Constructed Facilities 31 (4):04017025. doi:10.1061/(ASCE)CF.1943-5509.0001017.
  • Bartoli, G., M. Betti, A. M. Marra, and S. Monchetti. 2019. On the role played by the openings on the first frequency of historic masonry towers. Bulletin of Earthquake Engineering.
  • Bartoli, G., M. Betti, and S. Monchetti. 2017b. Seismic risk assessment of historic Masonry towers: Comparison of four case studies. Journal of Performance of Constructed Facilities 31 (5):04017039. doi:10.1061/(ASCE)CF.1943-5509.0001039.
  • Berto, L., A. Saetta, R. Scotta, and R. Vitaliani. 2004. Shear behaviour of masonry panel: Parametric FE analyses. International Journal of Solids and Structures 10 (4):480–86. doi:10.1016/j.ijsolstr.2004.02.046.
  • Bertolesi, E., G. Milani, and P. B. Lourenço. 2016. Implementation and validation of a total displacement non-linear homogenization approach for in-plane loaded masonry. Computers & Structures 176:13-33. doi: 10.1016/j.compstruc.2016.08.001.
  • Bui, T. T., A. Limam, V. Sarhosis, and M. Hjiaj. 2017. Discrete element modelling of the in-plane and out-of-plane behaviour of dry-joint masonry wall constructions. Engineering Structures 136:277–94. doi:10.1016/j.engstruct.2017.01.020.
  • Bui, -T.-T., A. Limam, and V. Sarhosis. 2019. Failure analysis of masonry wall panels subjected to in-plane and out-of-plane loading using the discrete element method. European Journal of Environmental and Civil Engineering 1–17. doi:10.1080/19648189.2018.1552897.
  • Cabboi, A., C. Gentile, and A. Saisi. 2017. From continuous vibration monitoring to FEM-based damage assessment: Application on a stone-masonry tower. Construction and Building Materials 156:252–65. doi:10.1016/j.conbuildmat.2017.08.160.
  • Carpinteri, A., S. Invernizzi, and G. Lacidogna. 2006. Numerical assessment of three medieval masonry towers subjected to different loading conditions. Mason International 19 (2):65–76.
  • Casolo, S. 1998. A three-dimensional model for vulnerability analysis of slender medieval masonry towers. Journal of Earthquake Engineering 2 (4):487–512. doi:10.1080/13632469809350332.
  • Casolo, S. 2001. Significant ground motion parameters for evaluation of the seismic performance of slender masonry towers. Journal of Earthquake Engineering 5 (2):187–204. doi:10.1080/13632460109350391.
  • Casolo, S., and G. Milani. 2013. Simplified out-of-plane modelling of three-leaf masonry walls accounting for the material texture. Construction And Building Materials 40:330–351. doi: 10.1016/j.conbuildmat.2012.09.090.
  • Casolo, S., G. Milani, G. Uva, and C. Alessandri. 2013. Comparative seismic vulnerability analysis on ten masonry towers in the coastal po valley in italy. Engineering Structures 49:465-490. doi: 10.1016/j.engstruct.2012.11.033.
  • Chetouane, B., F. Dubois, M. Vinches, and C. Bohatier. 2005. NSCD discrete element method for modelling masonry structures. International Journal for Numerical Methods in Engineering 64 (1):65–94. doi:10.1002/(ISSN)1097-0207.
  • Chiozzi, A., G. Milani, and A. Tralli. 2017a. Fast kinematic limit analysis of frp-reinforced masonry vaults. i: general genetic algorithm–nurbs–based formulation. Journal Of Engineering Mechanics 143 (9): 04017071. doi: 10.1061/(ASCE)EM.1943-7889.0001267.
  • Chiozzi, A., G. Milani, and A. Tralli. 2017b. A genetic algorithm nurbs-based new approach for fast kinematic limit analysis of masonry vaults. Computers & Structures 182:187–204. doi: 10.1016/j.compstruc.2016.11.003.
  • Clementi, F., A. Ferrante, E. Giordano, F. Dubois, and S. Lenci. 2019. Damage assessment of ancient masonry churches stroked by the Central Italy earthquakes of 2016 by the non-smooth contact dynamics method. Bulletin of Earthquake Engineering. doi:10.1007/s10518-019-00613-4.
  • Clementi, F., A. Pierdicca, A. Formisano, F. Catinari, and S. Lenci. 2017. Numerical model upgrading of a historical masonry building damaged during the 2016 Italian earthquakes: The case study of the Podestà palace in Montelupone (Italy). Journal of Civil Structural Health Monitoring 7 (5):703–17. doi:10.1007/s13349-017-0253-4.
  • Clementi, F., A. Pierdicca, G. Milani, V. Gazzani, M. Poiani, and S. Lenci. 2018. Numerical model upgrading of ancient bell towers monitored with a wired sensors network. 10th Int. Mason. Conf., S. Milani, G., Taliercio, A., Garrity, ed., Milano, 1–11.
  • D’Altri, A. M., V. Sarhosis, G. Milani, J. Rots, S. Cattari, S. Lagomarsino, E. Sacco, A. Tralli, G. Castellazzi, and S. de Miranda. 2019. Modeling strategies for the computational analysis of unreinforced Masonry structures: Review and classification. Archives of Computational Methods in Engineering. doi:10.1007/s11831-019-09351-x.
  • Dhanasekar, M., and A. Page. 1994. Stress-strain curves for brick masonry in biaxial compression. Journal of Structural Engineering 120 (3):1048. doi:10.1061/(ASCE)0733-9445(1994)120:3(1048.2).
  • Dhanasekar, M., P. W. Kleeman, and A. W. Page. 1985. Biaxial stress-strain relations for Brick Masonry. Journal of Structural Engineering 111:1085–100. doi:10.1061/(ASCE)0733-9445(1985)111:5(1085).
  • Explicative Notes for NTC 2018. Circolare del Ministero delle infrastrutture e dei trasporti 21 gennaio 2019, n. 7 del Consiglio superiore del Lavori Pubblici recante “Istruzioni per l’applicazione dell’«Aggiornamento delle “Norme tecniche per le costruzioni”» di cui al decreto ministeriale 17 gennaio 2018”. Gazzetta Ufficiale, Supplemento Ordinario n. 5 alla Gazzetta Ufficiale n. 35 dell'11 febbraio 2019, Rome (Italy).
  • Facchini, L., M. Betti, R. Corazzi, and V. C. Kovacevic. 2017. Nonlinear seismic behavior of historical masonry towers by means of different numerical models. Procedia Engineering 199:601–06. doi:10.1016/j.proeng.2017.09.103.
  • Ferrante, A., F. Clementi, and G. Milani. 2019. Dynamic behavior of an inclined existing masonry tower in italy. Frontiers in Built Environment 5, Paper #33. doi: 10.3389/fbuil.2019.00033.
  • Forgács, T., V. Sarhosis, and K. Bagi. 2017. Minimum thickness of semi-circular skewed masonry arches. Engineering Structures 140:317–36. doi:10.1016/j.engstruct.2017.02.036.
  • Foti, D., V. Vacca, and I. Facchini. 2018. DEM modeling and experimental analysis of the static behavior of a dry-joints masonry cross vaults. Construction and Building Materials 170:111–20. doi:10.1016/j.conbuildmat.2018.02.202.
  • Gazzani, V., M. Poiani, F. Clementi, G. Milani, and S. Lenci. 2018. Modal parameters identification with environmental tests and advanced numerical analyses for masonry bell towers: A meaningful case study. Procedia Structural Integrity 11:306–13. doi:10.1016/j.prostr.2018.11.040.
  • Gentile, C., and A. Saisi. 2019. FE modelling for seismic assessment of an ancient tower from ambient vibration survey. 8th Int. Oper. Modal Anal. Conf. IOMAC 2019, Copenhagen, Denmark
  • Gentile, C., A. Saisi, and A. Cabboi. 2015. Structural identification of a masonry tower based on operational modal analysis. International Journal of Architectural Heritage 9 (2):98–110. doi:10.1080/15583058.2014.951792.
  • Gentile, C., M. Guidobaldi, and A. Saisi. 2016. One-year dynamic monitoring of a historic tower: Damage detection under changing environment. Meccanica 51 (11):2873–89. doi:10.1007/s11012-016-0482-3.
  • Ghiassi, B., M. Soltani, and A. A. Tasnimi. 2012. A simplified model for analysis of unreinforced masonry shear walls under combined axial, shear and flexural loading. Engineering Structures 42:396–409. doi:10.1016/j.engstruct.2012.05.002.
  • Guidelines for Built Heritage. 2011. DPCM 9/2/2011. Italian Guidelines for the evaluation and the reduction of the seismic risk for the heritage, with reference to the Italian norm of constructions. Gazzetta Ufficiale GU Serie Generale n.47 del 26- 02-2011EZecca,Supplemento Ordinario n. 54. Istituto Poligrafico e Zecca dello Stato, Rome, Italy.
  • Habieb, A. B., M. Valente, and G. Milani. 2019. Effectiveness of different base isolation systems for seismic protection: numerical insights into an existing masonry bell tower. Soil Dynamics and Earthquake Engineering, 125, Paper #105752 125. doi: 10.1016/j.soildyn.2019.105752.
  • Heyman, J. 1966. The stone skeleton. International Journal of Solids and Structures 2 (2):249–79. “IN1-IN4,257-264,IN5-IN12,265-279”. doi:10.1016/0020-7683(66)90018-7.
  • Heyman, J. 1992. Leaning towers. Meccanica 27 (3):153–59. doi:10.1007/BF00430041.
  • Iervolino, I., F. De Luca, and E. Chioccarelli. 2012. Engineering seismic demand in the 2012 Emilia sequence: Preliminary analysis and model compatibility assessment. Annales Geophysicae 55 (4):639–45.
  • Lancioni, G., S. Lenci, Q. Piattoni, and E. Quagliarini. 2013. Dynamics and failure mechanisms of ancient masonry churches subjected to seismic actions by using the NSCD method: The case of the medieval church of S. Maria in Portuno. Engineering Structures 56:1527–46. doi:10.1016/j.engstruct.2013.07.027.
  • Milani, G. 2016. A genetic algorithm with zooming for the determination of the optimal open pit mines layout. The Open Civil Engineering Journal 10:301-322. doi: 10.2174/1874149501610010301.
  • Milani, G. 2019. Vulnerability evaluation of historical Masonry structures: Italian churches and towers. RILEM Bookseries.
  • Milani, G., and A. Tralli. 2011. Simple SQP approach for out-of-plane loaded homogenized brickwork panels, accounting for softening. Computers & Structures 89 (1–2):201–15. doi:10.1016/j.compstruc.2010.09.005.
  • Milani, G., and F. Milani. 2007. Genetic algorithm for the determination of binodal curves in ternary systems polymer-liquid(1)-liquid(2) and polymer(1)-polymer(2)-solvent. Journal of Computational Chemistry 28 (13):2203–15. doi:10.1002/(ISSN)1096-987X.
  • Milani, G., and F. Milani. 2008. Genetic algorithm for the optimization of rubber insulated high voltage power cables production lines. Computers & Chemical Engineering 32 (12):3198–212. doi:10.1016/j.compchemeng.2008.05.010.
  • Milani, G., and F. Milani. 2011. EPDM accelerated sulfur vulcanization: A kinetic model based on a genetic algorithm. Journal of Mathematical Chemistry 49 (7):1357–83. doi:10.1007/s10910-011-9832-5.
  • Milani, G., P. Lourenço, and A. Tralli. 2006b. Homogenization approach for the limit analysis of out-of-plane loaded masonry walls. Journal of Structural Engineering 132 (10):1650–63. doi:10.1061/(ASCE)0733-9445(2006)132:10(1650).
  • Milani, G., P. B. Lourenço, and A. Tralli. 2006a. Homogenised limit analysis of masonry walls, Part I: Failure surfaces. Computers & Structures 84 (3–4):166–80. doi:10.1016/j.compstruc.2005.09.005.
  • Milani, G., R. Shehu, and M. Valente. 2017b. Limit analysis approach for the seismic vulnerability reduction of masonry towers through strengthening with traditional and innovative materials. COMPDYN 2017 - Proceedings of the 6th International Conference on Computational Methods in Structural Dynamics and Earthquake Engineering Volume 1, 2017, Pages 2554-25636th International Conference on Computational Methods in Structural Dynamics and Earthquake Engineering, COMPDYN 2017; Rhodes Island; Greece; 15 June 2017 through 17 June 2017; Code 133542 DOI: 10.7712/120117.5588.18126
  • Milani, G., R. Shehu, and M. Valente. 2017a. Role of inclination in the seismic vulnerability of bell towers: FE models and simplified approaches. Bulletin of Earthquake Engineering 15 (4):1707–37. doi:10.1007/s10518-016-0043-0.
  • Milani, G., S. Casolo, A. Naliato, and A. Tralli. 2012a. Seismic assessment of a medieval masonry tower in Northern Italy by limit, nonlinear static, and full dynamic analyses. International Journal of Architectural Heritage 6 (5):489–524. doi:10.1080/15583058.2011.588987.
  • Milani, G., S. Russo, M. Pizzolato, and A. Tralli. 2012b. Seismic behavior of the San Pietro di Coppito church bell tower in L’Aquila, Italy. The Open Civil Engineering Journal 6 (1):131–47. doi:10.2174/1874149501206010131.
  • NTC 2018. New Italian technical norms on constructions. DM 17/ 01/2018 aggiornamento delle ‘Norme tecniche per le costruzioni’. Gazzetta Ufficiale dello Stato. Istituto Poligrafico e Zecca dello Stato, Rome, Italy.
  • Page, A. 1981. The biaxial compressive strength of brick masonry. Proceedings of the Institution of Civil Engineers (London). Part 1 - Design & Construction 71 (pt2), pp. 893-906 71 doi:10.1680/iicep.1981.1825
  • Peña, F., P. B. Lourenço, N. Mendes, and D. V. Oliveira. 2010. Numerical models for the seismic assessment of an old masonry tower. Engineering Structures 32 (5):1466–78. doi:10.1016/j.engstruct.2010.01.027.
  • Poiani, M., V. Gazzani, F. Clementi, G. Milani, M. Valente, and S. Lenci. 2018. Iconic crumbling of the clock tower in Amatrice after 2016 central Italy seismic sequence: Advanced numerical insight. Procedia Structural Integrity 11:314–21. Florence, Italy. doi:10.1016/j.prostr.2018.11.041.
  • Pulatsu, B., E. Erdogmus, P. B. Lourenço, and R. Quey. 2019. Simulation of uniaxial tensile behavior of quasi-brittle materials using softening contact models in DEM. International Journal of Fracture 217 (1–2):105–25. doi:10.1007/s10704-019-00373-x.
  • Rafiee, A., M. Vinches, and C. Bohatier. 2008. Application of the NSCD method to analyse the dynamic behaviour of stone arched structures. International Journal of Solids and Structures 45 (25–26):6269–83. doi:10.1016/j.ijsolstr.2008.07.034.
  • Reccia, E., A. Cazzani, and A. Cecchi. 2012. FEM-DEM modeling for out-of-plane loaded Masonry panels: A limit analysis approach. The Open Civil Engineering Journal 6 (1):231–38. doi:10.2174/1874149501206010231.
  • Reccia, E., L. Leonetti, P. Trovalusci, and A. Cecchi. 2018. A multiscale/multidomain model for the failure analysis of masonry walls: A validation with a combined FEM/DEM approach. International Journal for Multiscale Computational Engineering 16 (4):325–43. doi:10.1615/IntJMultCompEng.v16.i4.
  • Riva, P., F. Perotti, E. Guidoboni, and E. Boschi. 1998. Seismic analysis of the Asinelli Tower and earthquakes in Bologna. Soil Dynamics and Earthquake Engineering 17 (7–8):525–50. doi:10.1016/S0267-7261(98)00009-8.
  • Saisi, A., C. Gentile, and A. Ruccolo. 2016. Pre-diagnostic prompt investigation and static monitoring of a historic bell-tower. Construction and Building Materials 122:833–44. doi:10.1016/j.conbuildmat.2016.04.016.
  • Saisi, A., C. Gentile, and A. Ruccolo. 2018. Continuous monitoring of a challenging heritage tower in Monza, Italy. Journal of Civil Structural Health Monitoring 8 (1):77–90. doi:10.1007/s13349-017-0260-5.
  • Saloustros, S., M. Cervera, and L. Pelà. 2018. Tracking multi-directional intersecting cracks in numerical modelling of masonry shear walls under cyclic loading. Meccanica 53 (7):1757–76. doi:10.1007/s11012-017-0712-3.
  • Sarhosis, V., G. Milani, A. Formisano, and F. Fabbrocino. 2018. Evaluation of different approaches for the estimation of the seismic vulnerability of masonry towers. Bulletin of Earthquake Engineering 16 (3):1511–45. doi:10.1007/s10518-017-0258-8.
  • Savalle, N., É. Vincens, and S. Hans. 2019. Experimental and numerical studies on scaled-down dry-joint retaining walls: pseudo-static approach to quantify the resistance of a dry-joint brick retaining wall. Bulletin Of Earthquake Engineering in Press. doi: 10.1007/s10518-019-00670-9.
  • Silva, L. C., P. B. Lourenço, and G. Milani. 2017a. Nonlinear discrete homogenized model for out-of-plane loaded masonry walls. Asce Journal Of Structural Engineering, 143 (9),paper #04017099 143 04017099: 143 04017099. doi: 10.1061/(ASCE)ST.1943-541X.0001831.
  • Silva, L. C., P. B. Lourenço, and G. Milani. 2017b. Rigid block and spring homogenized model (hrbsm) for masonry subjected to impact and blast loading. International Journal Of Impact Engineering 109:14-28. doi: http://dx.doi.org/10.1016/.
  • Standoli, G., E. Giordano, G. Milani, and F. Clementi. 2019. Modal updating of historical belfries based on OMA indentification techniques. International Journal of Architectural Heritage, under review.
  • Taforel, P., F. Dubois, and S. Pagano. 2012. Evaluation of numerical uncertainties on the modeling of dry masonry structures submitted to out-of-plane loading, using the NSCD method in comparison with experimental test. ECCOMAS 2012 - Eur. Congr. Comput. Methods Appl. Sci. Eng. E-b.September 10-14 2012, Vienna, Austria.
  • Tavafi, E., A. Mohebkhah, and V. Sarhosis. 2019. Seismic behavior of the cube of Zoroaster tower using the discrete element method. International Journal of Architectural Heritage 1–16. doi:10.1080/15583058.2019.1650135.
  • ThiThuHang, T., and F. Dubois. 2016. Discrete modelling of excavation in fractured rock by NSCD method. Geotechnical Engineering 47 (1):62–68.
  • Tiberti, S., and G. Milani. 2019. 2D pixel homogenized limit analysis of non-periodic masonry walls. Computers & Structures 219:16–57. Pergamon. doi:10.1016/j.compstruc.2019.04.002.
  • Valente, M., and G. Milani. 2016a. Seismic assessment of historical masonry towers by means of simplified approaches and standard fem. Construction and Building Materials 108:74–104. doi: 10.1016/j.conbuildmat.2016.01.025.
  • Valente, M., and G. Milani. 2016b. Non-linear dynamic and static analyses on eight historical masonry towers in the north-east of italy. Engineering Structures 114:241–270. doi: 10.1016/j.engstruct.2016.02.004.
  • Valente, M., and G. Milani. 2018. Effects of geometrical features on the seismic response of historical Masonry towers. Journal of Earthquake Engineering 22 (sup1):2–34. doi:10.1080/13632469.2016.1277438.
  • Van Der Pluijm, R. 1993. Shear behaviour of bed joints. Proceeding of 6th North American Masonry Conference 1:125–36.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.