Publication Cover
International Journal of Architectural Heritage
Conservation, Analysis, and Restoration
Volume 15, 2021 - Issue 10
454
Views
21
CrossRef citations to date
0
Altmetric
Research Article

Influence of Bond Pattern on the in-plane Behavior of URM Piers

ORCID Icon, ORCID Icon & ORCID Icon
Pages 1492-1511 | Received 29 Jul 2019, Accepted 05 Dec 2019, Published online: 12 Dec 2019

References

  • Abrams, D. P. 1996. Effects of scale and loading rate with tests of concrete and masonry structures. Earthquake Spectra 12 (1):13–28. doi:10.1193/1.1585866.
  • Addessi, D., E. Sacco, and A. Paolone. 2010. Cosserat model for periodic masonry deduced by nonlinear homogenization. European Journal of Mechanics-A/Solids 29 (4):724–37. doi:10.1016/j.euromechsol.2010.03.001.
  • Anthoine, A. 1995. Derivation of the in-plane elastic characteristics of masonry through homogenization theory. International Journal of Solids and Structures 32 (2):137–63. doi:10.1016/0020-7683(94)00140-R.
  • Anthoine, A., G. Magonette, and G. Magenes 1995. Shear-compression testing and analysis of brick masonry walls. Proceedings of the 10th European Conference on Earthquake Engineering, 1657–62. Rotterdam, The Netherlands.
  • Azevedo, J., G. Sincraian, and J. V. Lemos. 2000. Seismic behavior of blocky masonry structures. Earthquake Spectra 16 (2):337–65. doi:10.1193/1.1586116.
  • Bacigalupo, A., A. Cavicchi, and L. Gambarotta. 2011. A simplified evaluation of the influence of the bond pattern on the brickwork limit strength. Advanced Materials Research 368–373:3495–508. doi:10.4028/www.scientific.net/AMR.368-373.3495.
  • Brooks, J. J., and A. Baker. 1998. Modulus of elasticity of Masonry. Masonry International 12 (2):58–63.
  • Bui, T. T., A. Limam, V. Sarhosis, and M. Hjiaj. 2017. Discrete element modelling of the in-plane and out-of-plane behaviour of dry-joint masonry wall constructions. Engineering Structures 136:277–94. doi:10.1016/j.engstruct.2017.01.020.
  • Casapulla, C., F. Portioli, A. Maione, and R. Landolfo. 2013. A macro-block model for in-plane loaded masonry walls with non-associative Coulomb friction. Meccanica 48 (9):2107–26. doi:10.1007/s11012-013-9728-5.
  • Cecchi, A., and G. Milani. 2008. A kinematic FE limit analysis model for thick English bond masonry walls. International Journal of Solids and Structures 45 (5):1302–31. doi:10.1016/j.ijsolstr.2007.09.019.
  • Cecchi, A., and K. Sab. 2004. A comparison between a 3D discrete model and two homogenised plate models for periodic elastic brickwork. International Journal of Solids and Structures 41 (9–10):2259–76. doi:10.1016/j.ijsolstr.2003.12.020.
  • Ciesielski, R. 1999. The dynamic module of elasticity of brick walls. Proceedings of the Conference of the Committee of Civil Engineering, Lublin, Poland. .
  • Costa, A. A., A. Penna, and G. Magenes. 2011. Seismic performance of autoclaved aerated concrete (AAC) masonry: From experimental testing of the in-plane capacity of walls to building response simulation. Journal of Earthquake Engineering 15 (1):1–31. doi:10.1080/13632461003642413.
  • Courant, R., K. Friedrichs, and H. Lewy. 1967. On the partial difference equations of mathematical physics. IBM Journal of Research and Development 11 (2):215–34. doi:10.1147/rd.112.0215.
  • Cundall, P. A. 1971. A computer model for simulating progressive large-scale movements in blocky rock systems. Proceedings of the Symposium of the International Society of Rock Mechanics, Nancy, France.
  • De Buhan, P., and G. de Felice. 1997. A homogenization approach to the ultimate strength of brick masonry. Journal of the Mechanics and Physics of Solids 45 (7):1085–104. doi:10.1016/S0022-5096(97)00002-1.
  • de Felice, G. 2011. Out-of-plane seismic capacity of masonry depending on wall section morphology. International Journal of Architectural Heritage 5 (4–5):466–82. doi:10.1080/15583058.2010.530339.
  • DeJong, M. J., and C. Vibert. 2012. Seismic response of stone masonry spires: Computational and experimental modeling. Engineering Structures 40:566–74. doi:10.1016/j.engstruct.2012.03.001.
  • Dhanasekar, M., P. W. Kleeman, and A. W. Page. 1985. Biaxial stress-strain relations for brick masonry. Journal of Structural Engineering (ASCE) 111 (5):1085–100. doi:10.1061/(ASCE)0733-9445(1985)111:5(1085).
  • Drysdale, R., A. Hamid, and L. Baker. 1999. Masonry structures–behavior and design. Boulder, Colorado: The Masonry Society.
  • Drysdale, R. G., and M. M. Khattab. 1995. In-plane behavior of grouted concrete masonry under biaxial tension-compression. ACI Structural Journal 92 (6):653–64.
  • Dumova-Jovanoska, E., and S. Churilov. 2009. Calibration of a numerical model for masonry with application to experimental results. Protection of Historical Buildings: PROHITECH 09:1139–45.
  • Eurocode 8 (EC8). 2005. Design of structures for earthquake resistance – Part 3: General rules, seismic actions and rules for buildings, design code EN 1998-3. European Committee for Standardization, Brussels, Belgium
  • FEMA-306. 1998. Evaluation of earthquake damaged concrete and masonry wall buildings. Basic Procedures Manual, Applied Technology Council (ATC).
  • Galvez, F., M. Giaretton, S. Abeling, J. Ingham, and D. Dizhur 2018. Discrete element modelling of a two-storey unreinforced masonry scaled model. Processdings of the 16th European Conference on Earthquake Engineering, Thessaloniki, Greece.
  • Godio, M., and K. Beyer. 2019. Evaluation of force-based and displacement-based out-of-plane seismic assessment methods for unreinforced masonry walls through refined model simulations. Earthquake Engineering & Structural Dynamics 48 (4):454–75. doi:10.1002/eqe.v48.4.
  • Graziotti, F., A. Penna, and G. Magenes. 2019. A comprehensive in situ and laboratory testing programme supporting seismic risk analysis of URM buildings subjected to induced earthquakes. Bulletin of Earthquake Engineering 17 (8):4575–99. doi:10.1007/s10518-018-0478-6.
  • Graziotti, F., U. Tomassetti, A. Rossi, B. Marchesi, S. Kallioras, M. Mandirola, A. Fragomeli, E. Mellia, S. Peloso, F. Cuppari, et al. 2016. Experimental campaign on a clay URM full-scale specimen representative of the Groningen building stock - Report n. EUC128/2016U, Eucentre Foundation, Pavia, Italy.
  • Graziotti, F., U. Tomassetti, S. Kallioras, A. Penna, and G. Magenes. 2017. Shaking table test on a full scale URM cavity wall building. Bulletin of Earthquake Engineering 15 (12):5329–64. doi:10.1007/s10518-017-0185-8.
  • Haach, V. G., G. Vasconcelos, and P. B. Lourenço. 2011. Parametrical study of masonry walls subjected to in-plane loading through numerical modeling. Engineering Structures 33 (4):1377–89. doi:10.1016/j.engstruct.2011.01.015.
  • Itasca Consulting Group Inc. 2013. 3DEC. Three dimensional distinct element code.
  • Jäger, W., H. Irmschler, and P. Schubert. 2004. Mauerwerk-Kalender. New York, NY: Ernst & Sohn, Wiley.
  • Kallioras, S., G. Guerrini, U. Tomassetti, B. Marchesi, A. Penna, F. Graziotti, and G. Magenes. 2018. Experimental seismic performance of a full-scale unreinforced clay-masonry building with flexible timber diaphragms. Engineering Structures 161:231–49. doi:10.1016/j.engstruct.2018.02.016.
  • Kaushik, H. B., D. C. Rai, and S. K. Jain. 2007. Stress-strain characteristics of clay brick masonry under uniaxial compression. Journal of Materials in Civil Engineering (ASCE) 19 (9):728–39. doi:10.1061/(ASCE)0899-1561(2007)19:9(728).
  • Kikuchi, K., K. Yoshimura, A. Tanaka, and K. Yoshida 2003. Effect of wall aspect ratio on seismic behaviour of reinforced fully grouted concrete masonry walls. Proceedings of 9th North American Masonry Conference, 214–25. Clemson, South Carolina, United States.
  • Lemos, J. V. 1997. Discrete element modelling of the seismic behaviour of stone masonry arches. Proceedings of the 4th International Symposium on Numerical Methods in Structural Masonry, 220–27. Florence, Italy.
  • Lourenço, P. B., and J. G. Rots. 1997. Multisurface interface model for analysis of masonry structures. Journal of Engineering Mechanics 123 (7):660–68. doi:10.1061/(ASCE)0733-9399(1997)123:7(660).
  • Magenes, G., and G. M. Calvi 1992. Cyclic behaviour of brick masonry walls. Proceedings of the 10th World Conference on Earthquake Engineering, Madrid, Spain.
  • Maheri, M. R., M. A. Najafgholipour, and A. R. Rajabi. 2008. The influence of mortar head joints on the in-plane and out-of-plane seismic strength of brick masonry walls. Iranian Journal of Science and Technology Transaction 35 (C1):63–79.
  • Malomo, D. 2019. Discrete element models for the seismic assessment of unreinforced masonry structures. PhD Thesis, University of Pavia, Italy.
  • Malomo, D., M. J. DeJong, and A. Penna. 2019a. Distinct element modelling of the in-plane cyclic response of URM walls subjected to shear-compression. Earthquake Engineering & Structural Dynamics 42 (12):1322–44. doi:10.1002/eqe.3178.
  • Malomo, D., R. Pinho, and A. Penna. 2018a. Using the applied element method for modelling calcium silicate brick masonry subjected to in-plane cyclic loading. Earthquake Engineering & Structural Dynamics 47 (7):1610–30. doi:10.1002/eqe.v47.7.
  • Malomo, D., R. Pinho, and A. Penna 2018b. The applied element method and the modelling of both in-plane and out-of-plane resposne of URM walls. Proceedings of the 16th European Conference on Earthquake Engineering, Thessaloniki, Greece.
  • Malomo, D., R. Pinho, and A. Penna. 2019b. Simulating the shake-table response of URM cavity-wall structures tested to collapse or near-collapse conditions. Earthquake Spectra. in press. doi:10.1177/8755293019891715.
  • Malomo, D., R. Pinho, and A. Penna. 2019c. Applied element modelling of the dynamic response of a full-scale clay brick masonry building specimen with flexible diaphragms. International Journal of Architectural Heritage 1–18. doi:10.1080/15583058.2019.1616004.
  • Mann, W., and H. Muller. 1982. Failure of shear-stressed masonry. An enlarged theory, tests and application to shear walls. Proceedings of the British Ceramic Society 30:223.
  • Marti, J., and P. Cundall. 1982. Mixed discretization procedure for accurate modelling of plastic collapse. International Journal for Numerical and Analytical Methods in Geomechanics 6 (1):129–39. doi:10.1002/(ISSN)1096-9853.
  • Matysek, P., and Z. Janowski 1996. Analysis of factors affecting the modulus of elasticity of the walls. Proceedings of the Conference of the Committee of Civil Engineering, Lublin, Poland.
  • Messali, F., and J. G. Rots. 2018. In-plane drift capacity at near collapse of rocking unreinforced calcium silicate and clay masonry piers. Engineering Structures 164:183–94. doi:10.1016/j.engstruct.2018.02.050.
  • Michalewicz, Z., and C. Z. Janikow. 1991. Genetic algorithms for numerical optimization. Statistics and Computing 1 (2):75–91. doi:10.1007/BF01889983.
  • Milani, G., and A. Cecchi. 2013. Compatible model for herringbone bond masonry: Linear elastic homogenization, failure surfaces and structural implementation. International Journal of Solids and Structures 50 (20–21):3274–96. doi:10.1016/j.ijsolstr.2013.05.032.
  • Milani, G., Y. W. Esquivel, P. B. Lourenço, B. Riveiro, and D. V. Oliveira. 2013. Characterization of the response of quasi-periodic masonry: Geometrical investigation, homogenization and application to the Guimarães castle, Portugal. Engineering Structures 56:621–41. doi:10.1016/j.engstruct.2013.05.040.
  • Mojsilović, N. 2011. Strength of masonry subjected to in-plane loading: A contribution. International Journal of Solids and Structures 48 (6):865–73. doi:10.1016/j.ijsolstr.2010.11.019.
  • Morandi, P., L. Albanesi, F. Graziotti, T. Li Piani, A. Penna, and G. Magenes. 2018. Development of a dataset on the in-plane experimental response of URM piers with bricks and blocks. Construction and Building Materials 190:593–611. doi:10.1016/j.conbuildmat.2018.09.070.
  • NTC-2008. 2008. Decreto Ministeriale 14/1/2008: Norme tecniche per le costruzioni. Ministry of Infrastructures and Transportations, G.U.S.O. n.30, 4/2/2008 [in Italian].
  • NZSEE. 2006. Assessment and improvement of the structural performance of buildings in Earthquakes, 1–94. Recommendations of a NZSEE Study Group on Earthquake Risk Buildings. New Zealand Society for Earthquake Engineering.
  • Otter, J. R. H. 1966. Dynamic relaxation compared with other iterative finite difference methods. Nuclear Engineering and Design 3 (1):183–85. doi:10.1016/0029-5493(66)90157-9.
  • Page, A. 1981. The biaxial compressive strength of brick masonry. Proceedings of the Institution of Civil Engineers (ICE), Newcastle, New South Wales, Australia, 893–906.
  • Page, A. W. 1983. The strength of brick masonry under biaxial tension-compression. International Journal of Masonry Construction 3 (1):26–31.
  • Paulay, T., and J. N. Priestley. 1992. Seismic design of reinforced concrete and masonry buildings. New York, NY: Wiley.
  • Paulson, T. J., and D. P. Abrams. 1990. Correlation between static and dynamic response of model masonry structures. Earthquake Spectra 6 (3):573–91. doi:10.1193/1.1585587.
  • Petry, S., and K. Beyer. 2014. Influence of boundary conditions and size effect on the drift capacity of URM walls. Engineering Structures 65:76–88. doi:10.1016/j.engstruct.2014.01.048.
  • Portioli, F., L. Cascini, C. Casapulla, and M. D’Aniello. 2013. Limit analysis of masonry walls by rigid block modelling with cracking units and cohesive joints using linear programming. Engineering Structures 57:232–47. doi:10.1016/j.engstruct.2013.09.029.
  • Pulatsu, B., E. M. Bretas, and P. B. Lourenço. 2016. Discrete element modeling of masonry structures: Validation and application. Earthquake and Structures 11 (4):563–82. doi:10.12989/eas.2016.11.4.563.
  • Roca, P., M. Cervera, G. Gariup, and L. Pela’. 2010. Structural analysis of masonry historical constructions. Classical and advanced approaches. Archives of Computational Methods in Engineering 17 (3):299–325. doi:10.1007/s11831-010-9046-1.
  • Salerno, G., and G. de Felice. 2009. Continuum modeling of periodic brickwork. International Journal of Solids and Structures 46 (5):1251–67. doi:10.1016/j.ijsolstr.2008.10.034.
  • Salmanpour, A. H., N. Mojsilović, and J. Schwartz. 2015. Displacement capacity of contemporary unreinforced masonry walls: An experimental study. Engineering Structures 89:1–16. doi:10.1016/j.engstruct.2015.01.052.
  • Schultz, A. E., R. S. Hutchinson, and G. S. Cheok 1998. Seismic performance of masonry walls with bed joint reinforcement. Structural Engineers World Congress, San Francisco, CA.
  • Szakály, F., Z. Hortobágyi, and K. Bagi. 2016. Discrete element analysis of the shear resistance of planar walls with different bond patterns. The Open Construction and Building Technology Journal 10 (1):220–32. doi:10.2174/1874836801610010220.
  • Thamboo, J. A., and M. Dhanasekar. 2016. Behaviour of thin layer mortared concrete masonry under combined shear and compression. Australian Journal of Structural Engineering 17 (1):39–52. doi:10.1080/13287982.2015.1116181.
  • Tomaževič, M. 1999. Earthquake-resistant design of masonry buildings. London, UK: Imperial College Press.
  • U.B.C. 1991. International conference of building officials. Uniform building code. International conference of building officials, USA, Whittier, Alaska.
  • Vanin, F., D. Zaganelli, A. Penna, and K. Beyer. 2017. Estimates for the stiffness, strength and drift capacity of stone masonry walls based on 123 quasi-static cyclic tests reported in the literature. Bulletin of Earthquake Engineering 15 (12):5435–79. doi:10.1007/s10518-017-0188-5.
  • Vasconcelos, G., and P. B. Lourenço. 2009. In-plane experimental behavior of stone masonry walls under cyclic loading. Journal of Structural Engineering 135 (10):1269–77. doi:10.1061/(ASCE)ST.1943-541X.0000053.
  • Wilding, B. V., and K. Beyer. 2018. The effective stiffness of modern unreinforced masonry walls. Earthquake Engineering & Structural Dynamics 47 (8):1683–705. doi:10.1002/eqe.v47.8.
  • Zhang, S., and K. Beyer. 2019. Numerical investigation of the role of masonry typology on shear strength. Engineering Structures 192:86–102.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.