Publication Cover
International Journal of Architectural Heritage
Conservation, Analysis, and Restoration
Volume 15, 2021 - Issue 10
125
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Numerical Study of Vibrations Induced by Traffic in Structures and a Screen Alternative for Its Mitigation

, ORCID Icon, &
Pages 1512-1525 | Received 24 Jun 2019, Accepted 09 Dec 2019, Published online: 27 Dec 2019

References

  • Albino, C., L. Godinho, P. Amado Mendes, P. Alves Costa, D. Dias da Costa, and D. Sores Jr. 2019. 3D FEM analysis of the effect of buried phononic crystal barriers on vibration mitigation. Engineering Structures 196:1–11. doi:10.1016/j.engstruct.2019.109340.
  • Al-Hussaini, T. M., and S. Ahmad. 1991. Design of wave barriers for reduction of horizontal ground vibration. Journal of Geotechnical Engineering (ASCE) 117 (4):616–36. doi:10.1061/(ASCE)0733-9410(1991)117:4(616).
  • Alzawi, A., and M. H. El Naggar. 2011. Full scale experimental study on vibration scattering using open and in-filled (GeoFoam) wave barriers. Soil Dynamics and Earthquake Engineering 31:306–17. doi:10.1016/j.soildyn.2010.08.010.
  • Andersen, L., and A. H. Augustesen. 2009. Mitigation of traffic-induced ground vibration by inclined wave barriers -a three-dimensional numerical analysis. Kraków, Poland: ICSV16.
  • Beskos, D. E., G. Dasgupta, and I. G. Vardoulakis. 1986. Vibration isolation using open or filled trenches part 1: 2-D homogeneous soil. Computational Mechanics 1 (1):43–63. doi:10.1007/BF00298637.
  • Car, E., F. Zalamea, S. Oller, J. Miquel, and E. Oñate. 2002. Numerical simulation of fiber reinforced composite materials. Two procedures. International Journal of Solids and Structures 39 (7):1967–86. ISSN: 0020-7683. doi:10.1016/S0020-7683(01)00240-2.
  • Castanheira Pinto, A., P. Alves Costa, L. Godinho, and P. Amado-Mendes. 2018. On the application of continuous buried periodic inclusions on the filtering of traffic vibrations: A numerical study. Soil Dynamics and Earthquake Engineering 113:391–405. doi:10.1016/j.soildyn.2018.06.020.
  • Clemente, P., and D. Rinaldis. 1998. Protection of a monumental building against traffic-induced vibrations. Soil Dynamics and Earthquake Engineering 17 (5):289–96. doi:10.1016/S0267-7261(98)00012-8.
  • Colaço, A., P. Alves Costa, P. Amado-Mendes, L. Godinho, and R. Calçada. 2017. Mitigation of vibrations and re-radiated noise in buildings generated by railway traffic: A parametric study. Procedia Engineering 199:2627–32. doi:10.1016/j.proeng.2017.09.401.
  • CIRSOC 201. 2005. Reglamento Argentino de Estructuras de Hormigón. INTI.
  • COMPack. 2008. CIMNE and Quantech-ATZ. Innovative finite element code for non linear analysis of composite structures. Explicit finite element. http://tts.cimne.com/compack/.
  • Crispino, M., and M. D’apuzzo. 2001. Measurement and prediction of traffic-induced vibrations in a heritage building. Journal of Sound and Vibration 246 (2):319–35. doi:10.1006/jsvi.2001.3648.
  • Dasgupta, G., D. E. Beskos, and I. G. Vardoulakis. 1990. Vibration isolation using open or filled trenches part 2: 3-D homogeneous soil. Computational Mechanics 6 (2):129–42. doi:10.1007/BF00350518.
  • DIN 4150. 1999. Part 3: Effects on structures. German Institute for Standardization. .
  • Escudero, C., S. Oller, X. Martinez, and A. Barbat. 15, 2016. A laminated structural finite element for the behavior of large non-linear reinforced concrete structures. Finite Elements in Analysis and Design 119:78–94. ISSN: 0168-874X. doi:10.1016/j.finel.2016.06.001.
  • Escudero, C., S. Oller, X. Martinez, and A. Barbat. 2017. Procedure based on composite fem technology for the resolution of concrete framed structures with masonry in-fills - comparison with Mexican building code. ASCE. Journal of Engineering Mechanics 143 (9):04017080/2017. ISSN (print): 0733-9399, ISSN (online): 1943-7889. doi:10.1061/(ASCE)EM.1943-7889.0001275.
  • Escudero, C., S. Oller, X. Martinez, A. Barbat, and C. Davalos. 2018. Damage assessment on the modeling of a large scale masonry building. ASCE Journal of Engineering Mechanics 144 (12):04018107. ISSN (print): 0733-9399, ISSN (online): 1943-7889. doi:10.1061/(ASCE)EM.1943-7889.0001526.
  • Flores, F. G., and E. Oñate. 2007. A rotation-free shell triangle for the analysis of kinked and branching shells. International Journal for Numerical Methods in Engineering 69 (7):1521–51. doi:10.1002/(ISSN)1097-0207.
  • François, S., L. Pyl, H. Masoumi, and G. Degrande. 2007. The influence of dynamic soil–Structure interaction on traffic induced vibrations in buildings. Soil Dynamics and Earthquake Engineering 27:655–74. doi:10.1016/j.soildyn.2006.11.008.
  • Gattulli, V., M. Lepidi, and F. Potenza. 2016. Dynamic testing and health monitoring of historic and modern civil structures in Italy. Structural Monitoring and Maintenance 3 (1):71–90. doi:10.12989/smm.2016.3.1.071.
  • Godinho, L., P. Amado Mendes, P. Alves Costa, and C. Albino. 2018. MFS analysis of the vibration filtering effect of periodic structures in elastic media. International Journal of Computational Methods and Experimental Measurements 6 (6):1108–19. doi:10.2495/CMEM-V6-N6-1108-1119.
  • Hajek, J., C. Blaney, and D. Hein. 2006. Mitigation of Highway Traffic-Induced Vibration. 2006 Annual Conference of the Transsportation Association of Canada, Pr. Eduard Island.
  • Hanson, C., D. A. Towers, and L. D. Meister. 2006. Transit noise and vibration impact assessment. FTA-VA-90-1003-06, Federal Transit Administration, U.S. Department of Transportantion.
  • Hao, H., T. C. Ang, and J. Shen. 2001. Building Vibration to traffic-induced ground motion. Building and Environment 36:321–36. doi:10.1016/S0360-1323(00)00010-X.
  • Hunaidi, O. 2000. Traffic vibrations in buildings. Construction Technology Updates. Institute Research in Construction
  • Hunaidi, O., and M. Tremlay. 1997. Traffic-induced building vibrations in Montréal. Canadian Journal of Civil Engineering 24 (5):736–53. doi:10.1139/l97-023.
  • Hung, H. H., Y. B. Yang, and D. W. Chang. 2004. Wave barriers for reduction of train-induced vibrations in soils. Journal of Geotechnical and Geoenvironmental Engineering 130 (12):1283–91. doi:10.1061/(ASCE)1090-0241(2004)130:12(1283).
  • ISO 2631-1. 1997. Mechanical vibration and shock – Evaluation of human exposure to whole-body vibration – Part 1: General requirements. International Organization for Standardization
  • ISO 2631-2. 2003. Mechanical vibration and shock – Evaluation of human exposure to whole-body vibration – Part 2: Vibration in buildings (1 Hz to 80 Hz). International Organization for Standardization.
  • Kattis, S. E., D. Polyzos, and D. E. Beskos. 1999. Modelling of pile wave barriers by effective trenches and their screening effectiveness. Soil Dynamics and Earthquake Engineering 18 (1):1–10. doi:10.1016/S0267-7261(98)00032-3.
  • Klein, R., H. Antes, and D. Le Houédec. 1997. Efficient 3D modelling of vibration isolation by open trenches. Computers & Structures 64 (1–4):809–17. doi:10.1016/S0045-7949(96)00418-X.
  • Kliukas, R., A. Jaras, and R. Kacianuaskas. 2008. Investigation of traffic-induced vibration in vilnius arch-cathedral belfry. Transport 23 (4):323–29. doi:10.3846/1648-4142.2008.23.323-329.
  • Kohan, P. H., L. G. Nallim, and S. B. Gea. 2011a. Dynamic characterization of beam type structures: Analytical, numerical and experimental applications. Applied Acoustics Journal Milton Keynes (UK) 72:975–81. doi:10.1016/j.apacoust.2011.06.007.
  • Kohan, P. H., and S. B. Gea. 2011b. Efecto de las Vibraciones Producidas por el Tráfico sobre la Torre de Campanario de la Basílica San Francisco. Memorias del 9º EIPAC11. National University of Salta. Salta, Argentina
  • Korkmaz, K., Z. Ay, S. Keskin, and D. Ceditoglu. 2011. Investigation of traffic-induced vibrations on masonry buildings in Turkey and countermeasures. Journal of Vibration and Control 17 (1):3–10. doi:10.1177/1077546309346240.
  • Leung, K. L., I. G. Vardoulakis, D. E. Beskos, and J. L. Tassoulas. 1991. Vibration isolation by trenches in continuously nonhomogeneous soil by the BEM. Soil Dynamics and Earthquake Engineering 10 (3):172–79. doi:10.1016/0267-7261(91)90030-4.
  • Lopes, P., J. Jésus FernándezRuiz, P. Alves Costa, L. Medina Rodríguez, and A. SilvaCardoso. 2016. Vibrations inside buildings due to subway railway traffic. Experimental validation of a comprehensive prediction model. Science of the Total Environment 568:1333–43. doi:10.1016/j.scitotenv.2015.11.016.
  • Lopes, P., P. Alves Costa, R. Calçada, and A. Silva Cardoso September 2014. Influence of soil stiffness on building vibrations due to railway traffic in tunnels: Numerical study. Computers and Geotechnics 61:277–91. doi:10.1016/j.compgeo.2014.06.005.
  • López, J., S. Oller, E. Oñate, and J. Lubliner. 1999. A homogeneous constitutive model for masonry. International Journal of Numerical Methods in Engineering 46 (10):1651–71. ISSN: 0029-5981. doi:10.1002/(SICI)1097-0207(19991210)46:10<1651::AID-NME718>3.0.CO;2-2.
  • Lu, J., B. Xu, and J. Wang. 2009. A numerical model for the isolation of moving-load induced vibrations by pile rows embedded in layered porous media. International Journal of Solids and Structures 46:3771–81. doi:10.1016/j.ijsolstr.2009.06.022.
  • Martinez, X., F. Rastellini, F. Flores, S. Oller, and E. Oñate. 2010. Computationally optimized formulation for the simulation of composite materials and delamination failures. Composites Part B: Engineering 42:134–44. doi:10.1016/j.compositesb.2010.09.013.
  • Massarsch, K. R. 2004. Mitigation of traffic-induced ground vibrations. 11th ICSDEE and the 3rd ICEGE Proceedings. Berkeley, California, USA.
  • Mhanna, M., M. Sadek, and I. Shahrour. 2012. Numerical modeling of traffic-induced ground vibration. Computers and Geotechnics 39:116–23. doi:10.1016/j.compgeo.2011.07.005.
  • Nallim, L. G., and S. Oller. 2008. An analytical - numerical approach to simulate the dynamic behaviour of arbitrarily laminated composite plate. Composite Structures Journal 85 (4):311–25. doi:10.1016/j.compstruct.2007.10.031.
  • Nallim, L. G., S. Oller, and R. O. Grossi. 2005. Statical and dynamical behaviour of thin fibre reinforced composite laminates with different shapes. Computer Methods in Applied Mechanics and Engineering 194:1797–822. doi:10.1016/j.cma.2004.06.009.
  • Norma IRAM 4078. 1989. Parte I. Guía para la evaluación de la exposición humana a vibraciones del cuerpo entero: Especificaciones generales. Instituto Argentino de Normalización y Certificación. Buenos Aires, Argentina.
  • Oller, S. 2014. Nonlinear dynamics of structures. Barcelona, Spain: Springer. ISBN 978-3-319-05193-2.
  • Oller, S., E. Car, and J. Lubliner. 2003. Definition of a general implicit orthotropic yield criterion. Computer Methods in Applied Mechanics and Engineering 192 (7–8):895–912. ISSN: 0045-7825. doi:10.1016/S0045-7825(02)00605-9.
  • Oller, S., E. Oñate, and J. Miquel. 1996. A mixing anisotropic formulation for the composites behaviour simulation. Communications in Numerical Methods in Engineering 12:471,482. doi:10.1002/(SICI)1099-0887(199608)12:8<471::AID-CNM995>3.0.CO;2-6.
  • Oller, S., J. Miquel, and F. Zalamea. 2005. Composite material behavior using a homogenization double scale method. Journal of Engineering Mechanics - ASCE 131 (1):65–79. ISSN: 0733-9399. doi:10.1061/(ASCE)0733-9399(2005)131:1(65).
  • Oñate, E. 2009a. Structural analysis with the finite element method. Linear Statics: Volume 1: Basis and Solids: Basis and Solids. Lecture Notes on Numerical Methods in Engineering and Science. Springer.
  • Oñate, E. 2009b. Structural analysis with the finite element method. linear statics: volume 2:beams, plates and. Springer.
  • Pau, A., and F. Vestroni. 2013. Vibration assessment and structural monitoring of the Basilica of Maxentius in Rome. Mechanical Systems and Signal Processing 41:454–66. doi:10.1016/j.ymssp.2013.05.009.
  • Persson, P., K. Persson, and G. Sandberg. 2016. Numerical study of reduction in ground vibrations by using barriers. Engineering Structures 115:18–27. doi:10.1016/j.engstruct.2016.02.025.
  • Persson, P., L. V. Andersen, K. Persson, and P. Bucinskas. 2017. Effect of structural design on traffic-induced building vibrations. Procedia Engineering 199:2711–16. doi:10.1016/j.proeng.2017.09.577.
  • Petracca, M., L. Pelà, R. Rossi, S. Oller, G. Camata, and E. Spacone. 2016. Regularization of first order computational homogenization for multiscale analysis of masonry structures. Computational Mechanics 57 (2):257–76. Print ISSN: 178-7675, Online ISSN: 1432-0924. doi:10.1007/s00466-015-1230-6.
  • Petracca, M., L. Pela, R. Rossi, S. Oller, G. Camata, and E. Spacone. 2017. Multiscale computational first order homogenization of thick shells for the analysis of out-of-plane loaded masonry walls. Computer Methods in Applied Mechanics and Engineering 315:273–301. ISSN: 0045-7825. doi:10.1016/j.cma.2016.10.046.
  • PLCd: Non-linear thermo-mechanic finite element code for research-oriented applications. 1991-to present. Free access code developed at CIMNE. http://www.cimne.com/PLCd.
  • Quinteros, R., S. Oller, and L. Nallim. 2012a. Modelo de Degradacion Diferenciada para Materiales Compuestos. Mecánica Computacional XXXI:1591–606. X Congreso Argentino de Mecánica Computacional (MECOM 2012).
  • Quinteros, R., S. Oller, and L. Nallim. 2012b. Nonlinear homogenization techniques to solve masonry structures problems. Composite Structures 94:724–30. doi:10.1016/j.compstruct.2011.09.006.
  • Quinteros, R., S. Oller, and L. Nallim. 2016. Modelo de elementos finitos para predicción de la influencia de las vibraciones inducidas por el tráfico en estructuras. V Congreso Argentino de Ingeniería Mecánica, “V CAIM 2016”. National University of Santiago del Estero. Santiago del Estero, Argentina.
  • Rainer, J. H. 1982. Effect of vibrations on historic buildings: An overview. The Association for Preservation Technology Bulletin XIV (1):2–10. doi:10.2307/1494019.
  • Rango, R. F., L. G. Nallim, and S. Oller. 2013. Static and dynamic analysis of thick laminated plates using enriched macroelements. Composite Structures 101:94–103. doi:10.1016/j.compstruct.2013.01.028.
  • Rastellini, F., S. Oller, O. Salomón, and E. Oñate. 2008. Composite material non-linear modelling for long fibre-reinforced laminates. Continuum basis, computational aspects and validations. Computers and Structures 86:879–96. doi:10.1016/j.compstruc.2007.04.009.
  • Royal Decree 1367. October 19, 2007. Whereby law 37/2003 of 17 November, noise, develops in relation to acoustic zoning, quality objectives and noise emissions. Ministry of the Environment, Spain. .
  • Sadeghi, J., and M. H. Esmaeili. 2017. Safe distance of cultural and historical buildings from subway lines. Soil Dynamics and Earthquake Engineering 96:89–103. doi:10.1016/j.soildyn.2017.02.008.
  • Shrivastava, R. K., and N. S. V. Kameswara Rao. 2002. Response of soil media due to impulse loads and isolation using trenches. Soil Dynamics and Earthquake Engineering 22 (8):695–702. doi:10.1016/S0267-7261(02)00060-X.
  • SN 640 312. 1978. Swiss standard for vibrational damage to buildings. Association of Swiss Highway Engineers. Switzerland.
  • Sol-Sanchez, M., F. Moreno-Navarro, and M. C. Rubio-Gamez. 2015. The use of elastic elements in railway tracks: A state of the art review. Construction and Building Materials 75:293–305. doi:10.1016/j.conbuildmat.2014.11.027.
  • Thompson, D. J., J. Jiang, M. G. R. Toward, M. F. M. Hussein, E. Ntotsios, A. Dijckmans, P. Coulier, G. Lombaert, and G. Degrande. 2016. Reducing railway-induced ground-borne vibration by using open trenches and soft-filled barriers. Soil Dynamics and Earthquake Engineering 88:45–59. doi:10.1016/j.soildyn.2016.05.009.
  • Toledo, M. W., I. Vargas, S. B. Gea, and L. G. Nallim. 2011. Características dinámicas del campanario de la basílica de San Francisco (Salta). Memorias del 9° EIPAC11. National University of Salta, Salta, Argentina.
  • Tsai, P. H., and T. S. Chang. 2009. Effects of open trench siding on vibration-screening effectiveness using the two-dimensional boundary element method. Soil Dynamics and Earthquake Engineering 29:865–73. doi:10.1016/j.soildyn.2008.09.005.
  • Tsai, P. H., Z. Y. Feng, and T. L. Jen. 2008. Three-dimensional analysis of the screening effectiveness of hollow pipe barriers for foundation-induced vertical vibration. Computers and Geotechnics 35:489–99. doi:10.1016/j.compgeo.2007.05.010.
  • Vogiatzis, K., and G. Kouroussis. 2015. Prediction and efficient control of vibration mitigation using floating slabs: Practical application at Athens metro lines 2 and 3. International Journal of Rail Transportation 3 (4):215–32. doi:10.1080/23248378.2015.1076622.
  • Wang, J. G., W. Sun, and S. Anand. 2009. Numerical investigation on active isolation of ground shock by soft porous layers. Journal of Sound and Vibration 321:492–509. doi:10.1016/j.jsv.2008.09.047.
  • Watts, G. R. 1988. Traffic vibration and building damage. Research Report 146. Transport and Road Research Laboratory, Department of Transport, Crowthorne, Berkshire. .
  • Watts, G. R. 1990. Traffic induced vibrations in buildings. Research Report 246. Transportation and Road Research Laboratory, Crowthorne, Berkshire. .
  • Woods, R. D. 1968. Screening of surface waves in soil. Journal of the Soil Mechanics and Foundations Division (ASCE) 94 (4):951–80.
  • Yang, Y. B., and H. H. Hung. 1997. A parametric study of wave barriers for reduction of train induced vibrations. International Journal for Numerical Methods in Engineering 40 (20):3729–47. doi:10.1002/(SICI)1097-0207(19971030)40:20<3729::AID-NME236>3.0.CO;2-8.
  • Zhifei Shi, J. H. 2013. Attenuation zones of periodic pile barriers and its application in vibration reduction for plane waves. Journal of Sound and Vibration 332:4423–39. doi:10.1016/j.jsv.2013.03.028.
  • Zienkiewicz, O., and L. R. Taylor. 1991. The finite element method. London,England: McGraw-Hill.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.