164
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Use of Ultrafine Mafic Rocks for the Enhancement of Carbonation Reaction in Lime Renders

, & ORCID Icon
Pages 1087-1097 | Received 08 Oct 2019, Accepted 23 Dec 2019, Published online: 30 Dec 2019

References

  • Alvarez, J. I., J. M. Fernández, I. Navarro-Blasco, A. Duran, and R. Sirera. 2013. Microstructural consequences of nanosilica addition on aerial lime binding materials: Influence of different drying conditions. Materials Characterization 80:36–49. doi:10.1016/j.matchar.2013.03.006.
  • Arandigoyen, M., and J. I. Alvarez. 2006. Carbonation process in lime paste with different water/binder ratio. Materiales De Construcción 56 (281):5–18.
  • Cizer, Ö., K. Van Balen, J. Elsen, and D. Van Gemert. 2008. Carbonation reaction kinetics of lime binders measured using XRD. Proceedings of ACEME08, 2nd International Conference on Accelerated Carbonation for Environmental and Materials Engineering. Rome, Italy, 139–48.
  • Cizer, Ö., K. Van Balen, J. Elsen, and D. Van Gemert. 2012. Real-time investigation of reaction rate and mineral phase modifications of lime carbonation. Construction and Building Materials 35:741–51. doi:10.1016/j.conbuildmat.2012.04.036.
  • Despotou, E., T. Schlegel, A. Shtiza, and F. Verhelst. 2014. Literature study on the rate and mechanism of carbonation of lime in mortars. 9th International Masonry Conference, Guimarães, Protugal, 1–12. doi:10.1002/dama.201500674.
  • Duran, A., I. Navarro-Blasco, J. M. Fernández, and J. I. Alvarez. 2014. Long-term mechanical resistance and durability of air lime mortars with large additions of nanosilica. Construction and Building Materials 58:147–58. doi:10.1016/j.conbuildmat.2014.02.030.
  • Elsen, J. 2006. Microscopy of historic mortars-a review. Cement and Concrete Research 36 (8):1416–24. doi:10.1016/j.cemconres.2005.12.006.
  • Ergenç, D., and R. Fort. 2018. Accelerating carbonation in lime-based mortar in high CO2 environments. Construction and Building Materials 188:314–25. doi:10.1016/j.conbuildmat.2018.08.125.
  • European Committee for Standardization (CEN). 1999a. Methods of test for mortar for masonry. Determination of flexural and compressive strength of hardened mortar. Brussels: CEN, EN 1015-11.
  • European Committee for Standardization (CEN). 1999b. Methods of test for mortar for masonry - Part 3: Determination of consistence of fresh mortar (by flow table). Brussels: CEN, EN 1015-13.
  • European Committee for Standardization (CEN). 2002. Methods of test for mortar for masonry - Part 18: Determination of water absorption coefficient due to capillary action of hardened mortar. Brussels: CEN, EN 1015-18.
  • Eurostat. 2017. Generation of waste by waste category. http://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=env_wasgen&lang=en.
  • Ferretti, D., and Z. P. Bažant. 2006. Stability of ancient masonry towers: Moisture diffusion, carbonation and size effect. Cement and Concrete Research 36 (7):1379–88. doi:10.1016/j.cemconres.2006.03.013.
  • Fournari, R., and I. Ioannou. 2019. Correlations between the properties of crushed fine aggregates. Minerals 9 (2):86. doi:10.3390/min9020086.
  • Fournari, R., I. Ioannou, and D. Vatyliotis. 2015. A study of fine aggregate properties and their effect on the quality of cementitious composite materials. Engineering Geology for Society and Territory - Volume 5 33–36. doi:10.1007/978-3-319-09048-1_5.
  • Gudbrandsson, S., D. Wolff-Boenisch, S. R. Gislason, and E. H. Oelkers. 2014. Experimental determination of plagioclase dissolution rates as a function of its composition and pH at 22 °C. Geochimica Et Cosmochimica Acta 139:154–72. doi:10.1016/j.gca.2014.04.028.
  • Hall, C., and W. Hoff. 2011. Water transport in brick, stone and concrete. CRC Press. doi:10.1201/b12840.
  • Jerónimo, A., A. Camões, B. Aguiar, and N. Lima. 2019. Hydraulic lime mortars with antifungal properties. Applied Surface Science 483:1192–98. doi:10.1016/j.apsusc.2019.03.156.
  • Kelemen, P. B., and J. Matter. 2008. In situ carbonation of peridotite for CO2 storage. Proceedings of the National Academy of Sciences of the United States of America 105 (45):17295–300. doi:10.1073/pnas.0805794105.
  • Kelemen, P. B., J. Matter, E. E. Streit, J. F. Rudge, W. B. Curry, and J. Blusztajn. 2011. Rates and mechanisms of mineral carbonation in peridotite: Natural processes and recipes for enhanced, in situ CO2 capture and storage. Annual Review of Earth and Planetary Sciences 39:545–76. doi:10.1146/annurev-earth-092010-152509.
  • Lackner, K. S., C. H. Wendt, D. P. Butt, E. L. Joyce, and D. H. Sharp. 1995. Carbon dioxide disposal in carbonate minerals. Energy 20 (11):1153–70. doi:10.1016/0360-5442(95)00071-N.
  • Lanas, J., and J. I. Alvarez. 2003. Masonry repair lime-based mortars: Factors affecting the mechanical behavior. Cement and Concrete Research 33 (11):1867–76. doi:10.1016/S0008-8846(03)00210-2.
  • Lanas, J., R. Sirera, and J. I. Alvarez. 2005. Compositional changes in lime-based mortars exposed to different environments. Thermochimica Acta 429 (2):219–26. doi:10.1016/j.tca.2005.03.015.
  • Lawrence, R. M. H. 2006. A study of carbonation in non-hydraulic lime mortars. PhD thesis, University of Bath, UK.
  • Lawrence, R. M. H., T. J. Mays, P. Walker, and D. D’Ayala. 2006. Determination of carbonation profiles in non-hydraulic lime mortars using thermogravimetric analysis. Thermochimica Acta 444:179–89. doi:10.1016/j.tca.2006.03.002.
  • Li, J., and M. Hitch. 2015. Ultra-fine grinding and mechanical activation of mine waste rock using a high-speed stirred mill for mineral carbonation. International Journal of Minerals, Metallurgy and Materials 22 (10):1005–16. doi:10.1007/s12613-015-1162-3.
  • Li, J., and M. Hitch. 2017. Ultra-fine grinding and mechanical activation of mine waste rock using a planetary mill for mineral carbonation. International Journal of Mineral Processing 158:18–26. doi:10.1016/j.minpro.2016.11.016.
  • Oelkers, E. H. 1999. A comparison of enstatite and forsterite dissolution rates and mechanisms. In Growth, dissolution and pattern formation in geosystems, ed. B. Jamtveit, and P. Meakin, 253–68. Dordrecht: Kluwer Academic Publishing.
  • Oelkers, E. H., J. Declercq, G. D. Saldi, S. R. Gislason, and J. Schott. 2018. Olivine dissolution rates: A critical review. Chemical Geology 500:1–19. doi:10.1016/j.chemgeo.2018.10.008.
  • Oelkers, E. H., S. R. Gislason, and J. Matter. 2008. Mineral Carbonation of CO2. Elements 4 (5):333–37. doi:10.2113/gselements.4.5.333.
  • Oliveira, M. A., M. Azenha, P. B. Lourenço, A. Meneghini, E. T. Guimarães, F. Castro, and D. Soares. 2017. Experimental analysis of the carbonation and humidity diffusion processes in aerial lime mortar. Construction and Building Materials 148:38–48. doi:10.1016/j.conbuildmat.2017.04.120.
  • Pérez-Nicolás, M., A. Duran, I. Navarro-Blasco, J. M. Fernández, R. Sirera, and J. I. Alvarez. 2016. Study on the effectiveness of PNS and LS superplasticizers in air lime-based mortars. Cement and Concrete Research 82:11–22. doi:10.1016/j.cemconres.2015.12.006.
  • Rigopoulos, I., A. L. Harrison, A. Delimitis, I. Ioannou, A. M. Efstathiou, T. Kyratsi, and E. H. Oelkers. 2018a. Carbon sequestration via enhanced weathering of peridotites and basalts in seawater. Applied Geochemistry 91:197–207. doi:10.1016/j.apgeochem.2017.11.001.
  • Rigopoulos, I., I. Ioannou, A. Delimitis, A. M. Efstathiou, and T. Kyratsi. 2018b. Ball milling effect on the CO2 uptake of mafic and ultramafic rocks: A review. Geosciences 8 (11):406. doi:10.3390/geosciences8110406.
  • Rigopoulos, I., K. C. Petallidou, M. A. Vasiliades, A. Delimitis, I. Ioannou, A. M. Efstathiou, and T. Kyratsi. 2015a. Carbon dioxide storage in olivine basalts: Effect of ball milling process. Powder Technology 273:220–29. Elsevier B.V. doi:10.1016/j.powtec.2014.12.046.
  • Rigopoulos, I., M. A. Vasiliades, K. C. Petallidou, I. Ioannou, A. M. Efstathiou, and T. Kyratsi. 2015b. A method to enhance the CO2 storage capacity of pyroxenitic rocks. Greenhouse Gases: Science and Technology 5 (5):577–91. doi:10.1002/ghg.1502.
  • Rigopoulos, I., K. C. Petallidou, M. A. Vasiliades, A. Delimitis, I. Ioannou, A. M. Efstathiou, and T. Kyratsi. 2016a. On the potential use of quarry waste material for CO2 sequestration. Journal of CO2 Utilization 16:361–70. Elsevier Ltd. doi:10.1016/j.jcou.2016.09.005.
  • Rigopoulos, I., M. A. Vasiliades, I. Ioannou, A. M. Efstathiou, A. Godelitsas, and T. Kyratsi. 2016b. Enhancing the rate of ex situ mineral carbonation in dunites via ball milling. Advanced Powder Technology 27 (2):360–71. doi:10.1016/j.apt.2016.01.007.
  • Rigopoulos, I., Á. Török, T. Kyratsi, A. Delimitis, and I. Ioannou. 2018c. Sustainable exploitation of mafic rock quarry waste for carbon sequestration following ball milling. Resources Policy 59:24–32. doi:10.1016/j.resourpol.2018.08.002.
  • Rigopoulos, I., B. Tsikouras, P. Pomonis, and K. Hatzipanagiotou. 2010. The influence of alteration on the engineering properties of dolerites: The examples from the Pindos and Vourinos ophiolites (northern Greece). International Journal of Rock Mechanics and Mining Sciences 47 (1):69–80. doi:10.1016/j.ijrmms.2009.04.003.
  • Rodriguez-Navarro, C., O. Cazalla, K. Elert, and E. Sebastian. 2002. Liesegang pattern development in carbonating traditional lime mortars. Proceedings of the Royal Society London A 458:2261–73. doi:10.1098/rspa.2002.0975.
  • Romão, I., M. Eriksson, E. Nduagu, J. Fagerlund, L. M. Gando-Ferreira, and R. Zevenhoven. 2012. Carbon dioxide storage by mineralisation applied to a lime kiln. Proceedings of the 25th International Conference on Efficiency, Cost, Optimisation, Simulation and Environmental impact on Energy Systems, Perugia, Italy, June 26–29, 13.
  • Saldi, G. D., J. Schott, O. S. Pokrovsky, Q. Gautier, and E. H. Oelkers. 2009. Magnesite growth rates as a function of temperature and saturation state. Geochimica Et Cosmochimica Acta 73 (19):5646–57. doi:10.1016/j.gca.2009.06.035.
  • Sánchez-Moral, S., J. García-Guinea, L. Luque Luque, R. González-Martín, and P. López-Arce. 2004. Carbonation kinetics in Roman-like lime mortars. Materiales De Construccion 54 (275):23–37. doi:10.3989/mc.2004.v54.i275.245.
  • Sanna, A., M. Uibu, G. Caramanna, R. Kuusik, and M. Maroto-Valer. 2014. A review of mineral carbonation technologies to sequester CO2. Chemical Society Reviews 43 (23):8049–80. doi:10.1039/c4cs00035h.
  • Schaef, H. T., B. P. McGrail, A. T. Owen, and B. W. Arey. 2013. Mineralization of basalts in the CO2-H2O-H2S system. International Journal of Greenhouse Gas Control 16:187–96. doi:10.1016/j.ijggc.2013.03.020.
  • Seifritz, W. 1990. CO2 disposal by means of silicates. Nature 345 (6275):486. doi:10.1038/345486b0.
  • Snæbjörnsdóttir, S., and S. R. Gislason. 2016. CO2 storage potential of basaltic rocks offshore Iceland. Energy Procedia 86:371–80. doi:10.1016/j.egypro.2016.01.038.
  • Snæbjörnsdóttir, S. Ó., F. Wiese, T. Fridriksson, H. Ármansson, G. M. Einarsson, and S. R. Gislason. 2014. CO2 storage potential of basaltic rocks in Iceland and the oceanic ridges. Energy Procedia 63:4585–600. doi:10.1016/j.egypro.2014.11.491.
  • Theodoridou, M., E. Charalambous, P. Maravelaki-Kalaitzaki, and I. Ioannou. 2016. Amelioration of crushed brick-Lime composites using nano-additives. Cement and Concrete Composites 68:77–87. doi:10.1016/j.cemconcomp.2016.02.009.
  • Theodoridou, M., I. Ioannou, and M. Philokyprou. 2013. New evidence of early use of artificial pozzolanic material in mortars. Journal of Archaeological Science 40 (8):3263–69. doi:10.1016/j.jas.2013.03.027.
  • Van Balen, K. 2005. Carbonation reaction of lime, kinetics at ambient temperature. Cement and Concrete Research 35 (4):647–57. doi:10.1016/j.cemconres.2004.06.020.
  • Velbel, M. A. 1999. Bond strength and the relative weathering rates of simple orthosilicates. American Journal of Science 299:679–96. doi:10.2475/ajs.299.7-9.679.
  • Westgate, P., R. J. Ball, and K. Paine. 2019. Olivine as a reactive aggregate in lime mortars. Construction and Building Materials 195:115–26. doi:10.1016/j.conbuildmat.2018.11.062.
  • Zhang, Y., L. K. Korkiala-Tanttu, H. Gustavsson, and A. Miksic. 2019. Assessment for sustainable use of quarry fines as pavement construction materials: Part I - Description of basic quarry fine properties. Materials 12:1209. doi:10.3390/ma12081209.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.