417
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Comparative in Situ Study of Nanolime, Ethyl Silicate and Acrylic Resin for Consolidation of Wall Paintings with High Water and Salt Contents at the Chapter Hall of Chartres Cathedral

, , , , ORCID Icon &
Pages 1120-1133 | Received 06 Dec 2019, Accepted 11 Feb 2020, Published online: 29 Mar 2020

References

  • Arnold, A., and K. Zehnder. 1990. Salt weathering on monuments. In The conservation of monuments in the Mediterranean Basin: The influence of coastal environment and salt spray on limestone and marble, Proceedings of the 1st International Symposium, ed. G. Edizioni, 31–58, Bari, Italy.
  • Baglioni, P., D. Chelazzi, R. Giorgi, E. Carretti, N. Toccafondi, Y. Jaidar, et al. 2014. Commercial Ca(OH)2 nanoparticles for the consolidation of immovable works of art. Applied Physics A. 114(3):723–32. doi:10.1007/s00339-013-7942-6.
  • Baglioni, P., R. Giorgi, and C. Chen. 2003a. Nanoparticle technology saves cultural relics: Potential for a multimedia digital library. In Online Proceedings of DELOS/NSF Workshop on Multimedia Contents in Digital Libraries, Chania, Crete, Greece
  • Baglioni, P., R. Giorgi, C. C. Chen, et al. 2003b. Nanoparticle technology saves cultural relics: Potential for a multimedia digital library. In Online Proceedings of DELOS/NSF Workshop on Multimedia Contents in Digital Libraries, Crete, Greece, June 2-3 (2003).
  • Bigas, J. P., G. Martinet, A. C. Perrot, et al. 2009. Pierre et patrimoine: Connaissance et conservation. Actes sud, Paris, France.
  • Bionda, D., and P. Storemyr. 2002. Modeling the behavior of salt mixtures in walls: A case study from Tenaille von Fersen, Suomenlinna, Finland. In The study of salt deterioration mechanisms. Decay of brick walls influenced by interior climate changes, ed. T. Von Konow, 95–101. Helsinki: Suomenlinnan Hoitokunta.
  • Bläuer, C., C. Franzen, and V. Vergès-Belmin. 2012. Simple field tests in stone conservation. In Proceedings of the 12th International Congress on the Deterioration and Conservation of Stone, New York, USA: Columbia University.
  • Borsoi, G., M. Tavares, R. Veiga, and A. S. Silva. 2012. Microstructural characterization of consolidant products for historical renders: An innovative nanostructured lime dispersion and a more traditional ethyl silicate limewater solution. Microscopy and Microanalysis 18 (5):1181–89. doi:10.1017/S1431927612001341.
  • Brajer, I., and N. Kalsbeek. 1999. Limewater absorption and calcite crystal formation on a limewater-impregnated secco wall painting. Studies in Conservation 44 (3):145–56.
  • Brus, J., P. Kotlik, J. Brus, and P. Kotlik. 1996. Cracking of organosilicone stone consolidants in gel form. Studies in Conservation 41 (1):55–59. doi:10.2307/1506552.
  • Carretti, E., and L. Dei. 2004. Physicochemical characterization of acrylic polymeric resins coating porous materials of artistic interest. Progress in Organic Coatings 49 (3):282–89. doi:10.1016/j.porgcoat.2003.10.011.
  • Charola, A. E., M. Laurenzi Tabasso, and U. Santamaria. 1985. The effect of water on the hydrophobic properties of an acrylic resin. In Vth international congress on deterioration and conservation of stone, Proceedings, ed. Presses Polytechniques Romandes, 739–47, Lausanne, Switzerland: Presses polytechniques romandes.
  • Chelazzi, D., G. Poggi, Y. Jaidar, N. Toccafondi, R. Giorgi, P. Baglioni, et al. 2013. Hydroxide nanoparticles for cultural heritage: Consolidation and protection of wall paintings and carbonate materials. Journal of Colloid and Interface Science 392:42–49. doi:10.1016/j.jcis.2012.09.069.
  • Daehne, A., and C. Herm. 2013. Calcium hydroxide nanosols for the consolidation of porous building materials-results from EU-STONECORE. Heritage Science 1 (1):11. doi:10.1186/2050-7445-1-11.
  • Dandrel, C. 2017. Rapport d’étude et intervention, Chartres, salle capitulaire de la cathédrale, peintures murales. Rapport interne, Fontenay-aux-Roses, France
  • Darwish, S. S. 2013. Evaluation of the effectiveness of some consolidants used for the treatment of the XIXth century Egyptian cemetery wall painting. International Journal of Conservation Science 4 (4):413–22.
  • Desprat, A. 2013. Les peintures murales prehispaniques de san juan ixcaquixtla: Application d’un traitement de nanoparticules d’hydroxyde de calcium et barium. Conservation-restauration des biens culturels 31:17–25.
  • Drdácký, M., J. Lesák, S. Rescic, Z. Slížková, P. Tiano, J. Valach, et al. 2012. Standardization of peeling tests for assessing the cohesion and consolidation characteristics of historic stone surfaces. Materials and Structures 45.4:505–20. doi:10.1617/s11527-011-9778-x.
  • Duboscq, B. 2015. Étude de deux prélèvements de polychromie de la salle capitulaire, cathédrale de Chartres. Laboratoire M.S.M.A.P. SARL, rapport MSMAP 15-060 MH, Pessac, France
  • Favaro, M., R. Mendichi, F. Ossola, U. Russo, S. Simon, P. Tomasin, P. A. Vigato, et al. 2006. Evaluation of polymers for conservation treatments of outdoor exposed stone monuments. Part I: Photo-oxidative weathering. Polymer Degradation and Stability. 91(12):3083–96. doi:10.1016/j.polymdegradstab.2006.08.012.
  • Ferreira Pinto, A. P., and J. Delgado Rodrigues. 2014. Impacts of consolidation procedures on colour and absorption kinetics of carbonate stones. Studies in Conservation 59 (2):79–90. doi:10.1179/2047058412Y.0000000075.
  • Giorgi, R., L. Dei, and P. Baglioni. 2000. A new method for consolidating wall paintings based on dispersions of lime in alcohol. Studies in Conservation 45 (3):154–61.
  • Giorgi, R., M. Ambrosi, N. Toccafondi, and P. Baglioni. 2010. Nanoparticles for cultural heritage conservation: Calcium and barium hydroxide nanoparticles for wall painting consolidation. Chemistry - A European Journal 16 (31):9374–82. doi:10.1002/chem.201001443.
  • Gregorio, S. D. 2010. Nanorestore® for the consolidation of wall paintings. Influence of the thermohygrometric parameters and the presence of saline contamination on the efficacy of the treatment. In CeROArt. Conservation, exposition, Restauration d’Objets d’Art. Association CeROArt asbl.
  • Grissom, C. A., A. E. Charola, A. Boulton, and M. F. Mecklenburg. 1999. Evaluation over time of an ethyl silicate consolidant applied to ancient lime plaster. Studies in Conservation 44 (2):113–20.
  • Matteini, M., and S. Giovannoni. 1996. The protective effect of ammonium oxalate treatment on the surface of wall paintings. In Zum Thema Fassadenmalerei= Painted facades, Proceedings of the eurocare project, vienna, 1996, pp. 95–101.
  • Milanesi, C., F. Baldi, S. Borin, L. Brusetti, F. Ciampolini, F. Iacopini, M. Cresti, et al. 2009. Deterioration of medieval painting in the chapel of the Holy Nail, Siena (Italy) partially treated with Paraloid B72. International Biodeterioration & Biodegradation. 63(7):844–50. doi:10.1016/j.ibiod.2009.03.004.
  • Mora, P., L. Mora, and P. Philippot. 1984. Conservation of wall paintings. London, Boston: Butter Worths.
  • Normand, L., S. Duchêne, V. Vergès-Belmin, et al. 2019. Étude de la consolidation de peintures murales en présence de forte teneur en eau et en sels solubles: Essais de consolidants sur le mur est de la salle capitulaire de la cathédrale de Chartres. LRMH Laboratoire de Recherche des Monuments Historiques, rapport n°1453A, Champs-sur-Marne, France
  • Normand, L., and V. Vergès-Belmin. 2016. Cathédrale Notre-Dame de Chartres, salle capitulaire, décor peint du mur intérieur est, Mesure des propriétés de sorption d’eau et analyses MEB-EDS de prélèvements effectués par forage et d’un évaporat. LRMH Laboratoire de Recherche des Monuments Historiques, rapport n°1261E, Champs-sur-Marne, France
  • Otero, J., A. E. Charola, C. A. Grissom, and V. Starinieri. 2017. An overview of nanolime as a consolidation method for calcareous substrates. Ge-conservación 1 (11):71–78.
  • Ouvrage collectif. 2006. Ouvrages de maçonnerie. Ministère de la culture et de la communication, Département communication et documentation, Paris, France
  • Piqué, F., L. Dei, and E. Ferroni. 1992. Physicochemical aspects of the deliquescence of calcium nitrate and its implications for wall painting conservation. Studies in Conservation 37 (4):217–27.
  • Pondelak, A., S. Kramar, M. L. Kikelj, A. Sever Škapin, et al. 2017. In-situ study of the consolidation of wall paintings using commercial and newly developed consolidants. Journal of Cultural Heritage 28:1–8. doi:10.1016/j.culher.2017.05.014.
  • Price, C. A. 2000. An expert chemical model for determining the environmental conditions needed to prevent salt damage in porous materials. In European commission research report No 11, Protection and conservation of European cultural heritage, ed. Archetype Publications. London, pp. 156-159.
  • Ramirez-Martin, S. 2015a. Étude stratigraphique de décor peint, salle capitulaire de la cathédrale de Chartres. Études Recherches Matériaux secteur Monuments Historiques, rapport ERM 15 099 SR 160, Poitiers, France
  • Ramirez-Martin, S. 2015b. Étude de la contamination saline et de l’humidité de la maçonnerie, Mur Est de la salle capitulaire de la cathédrale Notre-Dame de Chartres. Études Recherches Matériaux secteur Monuments Historiques, rapport ERM 15 211 SR 306, Poitiers, France
  • Sassoni, E., G. Graziani, and E. Franzoni. 2016. An innovative phosphate-based consolidant for limestone. Part 1: Effectiveness and compatibility in comparison with ethyl silicate. Construction and Building Materials 102:918–30. doi:10.1016/j.conbuildmat.2015.04.026.
  • Snethlage, R., and E. Wendler. 1997. Moisture cycles and sandstone degradation. Environmental Sciences Research Report ES 20:7–24.
  • Trichereau, B., and D. Martos-Levif. 2016. Chartres, salle capitulaire, Caractérisation et analyses physico-chimiques. LRMH Laboratoire de Recherche des Monuments Historiques, rapport n°1261D, Champs-sur-Marne, France
  • Wheeler, G. 2005. Alkoxysilanes and the consolidation of stone. LA, USA: Getty Publications.
  • Zehnder, K., and A. Arnold. 1989. Crystal growth in salt efflorescence. Journal of Crystal Growth 97 (2):513–21. doi:10.1016/0022-0248(89)90234-0.
  • Zendri, E., G. Biscontin, I. Nardini, and S. Riato. 2007. Characterization and reactivity of silicatic consolidants. Construction and Building Materials 21 (5):1098–106. doi:10.1016/j.conbuildmat.2006.01.006.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.