364
Views
7
CrossRef citations to date
0
Altmetric
Research Article

Comparative Evaluation of the Morphological Characteristics of Nanolime Dispersions for the Consolidation of Architectural Monuments

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 994-1007 | Received 05 Nov 2019, Accepted 16 Mar 2020, Published online: 26 Apr 2020

References

  • Ambrosi, A., L. Dei, R. Giorgi, C. Neto, and P. Baglioni. 2001. Colloidal particles od Ca(OH)2: Properties and applications to restoration of frescoes. Langmuir 17. doi:10.1021/la010269b.
  • Antao, S. M., and I. Hassan. 2010. Temperature dependence of the structural parameters in the transformation of aragonite. The Canadian Mineralogist 48 (5):1225–36. doi:10.3749/canmin.48.5.1225.
  • Arizzi, A., L. S. Gomez-Villalba, P. Lopez-Arce, G. Cultrone, and R. Fort. 2015. Lime mortar consolidation with nanostructured calcium hydroxide dispersions: The efficacy of different consolidating products for heritage conservation. European Journal of Mineralogy 27:3. doi:10.1127/ejm/2015/0027-2437.
  • Azevedo, A., R. Etchepare, S. Calgaroto, and J. Rubio. 2016. Aqueous dispersions of nanobubbles: Generation, properties and features. Minerals Engineering 94:29–37. doi:10.1016/j.mineng.2016.05.0010892-6875.
  • Baglioni, P., D. Chelazzi, and P. O’Brien. 2013. Nanoscience for the conservation of works of art. RCR Nanotechnology and Nanoscience N. 28, eds. Cambridge: Royal society of Chemistry.
  • Bastone, S., D. F. Chillura Martin, V. Renda, M. L. Saladin, G. Poggi, and E. Caponetti. 2017. Alcoholic nanolime dispersion obtained by the in solubilisation-precipitation method and its application for the deacidification of ancient paper. Colloids and Surfaces A: Physicochemical and Engineering Aspects 513:241–49. doi:10.1016/j.colsurfa.2016.10.049.
  • Becerra, J., A. P. Zaderenk, M. A. Gomez-Moron, and P. Ortiz. 2019. Nanoparticles applied to stone buildings. International Journal of Architectural Heritage. doi:10.1080/15583058.2019.1672828.
  • Borsoi, G., B. Lubelli, R. Van Hees, R. Veiga, and A. Santos Silva. 2015. Understanding the transport of nanolime consolidants within Maastricht limestone. Journal of Cultural Heritage 18:242–49. doi:10.1016/j.culher.2015.07.014.
  • Borsoi, G., B. Lubelli, R. VanHees, R. Veiga, and A. Santos Silva. 2018. Application protocol for the consolidation of calcareous substrates by the use of nanolimes: From laboratory research to practice. Restoration of Buildings and Monuments 22 (4–6):99–109. doi:10.1515/rbm-2016-0008.
  • Borsoi, G., B. Lubelli, R. VanHees, R. Veiga, A. Santos Silva, L. Colla, L. Fedele, and P. Tomasin. 2016. Effect of solvent on nanolime transport within limestone: How to improve in-depth deposition. Colloids and Surfaces A: Physicochemical and Engineering Aspects 497:171–81. doi:10.1016/j.culher.2015.07.014.
  • Cho, S.-H., J.-Y. Kim, J.-H. Chun, and J.-D. Kim. 2005. Ultrasonic formation of nanobubbles and their zeta-potentials in aqueous electrolyte and surfactant solutions. Colloids and Surfaces A: Physicochemical and Engineering Aspects 269:28–34. doi:10.1016/j.colsurfa.2005.06.063.
  • Cizer, O., K. Balen, J. Elsen, and D. Van Gemert. 2012. Real-time investigation of reaction rate and mineral phase modification of lime carbonation. Construction and Building Materials 35:741–51. doi:10.1016/j.conbuildmat.2012.04.036.
  • D’Armada, P., and E. Hirst. 2012. Nano-lime for consolidation of plaster and stone. International Journal of Architectural Heritage 28 (1):63–80. doi:10.1080/13556207.2012.10785104.
  • Daehne, A., and C. Herm. 2013. Calcium hydroxide nanosols for the consolidation of porous build. materials - results from EU-STONECORE. Heritage Science 1–11. doi:10.1186/2050-7445-1-11.
  • Daniele, V., and G. Taglieri. 2012. Synthesis of Ca(OH)2 nanoparticles with the addition of Triton X-100. Protective treatments on natural stones: Preliminary results. Journal of Cultural Heritage 13 (1):40–46. doi:10.1016/j.culher.2016.06.010.
  • Daniele, V., G. Taglieri, and R. Quaresima. 2008. The nanolimes in cultural heritage conservation: Characterisation and analysis of the carbonatation process. Journal of Cultural Heritage 9:294–231. doi:10.1016/j.culher.2007.10.007.
  • Favvas, E., A. Mitropoulos, G. Bomis, A. Varoutoglou, R. Kosheleva, E. Michailidi, and E. Efthimiadou 2019. Hellenic industrial property organisation application for patent (submitted)Favvas, E., Mitropoulos, A., Bomis, G., Varoutoglou, A., Kosheleva, R., Michailidi, E., Efthimiadou, E., A new method and device for nanobubbles production, in: G.I.P. Organization (Eds), Ap. No. 2017000137, 2019.
  • Fratini, E., M. G. Page, R. Giorgi, H. Colfen, P. Baglioni, B. Deme, and T. Zemb. 2007. Competitive surface adsorption of solvent molecules and compactness of agglomeration in calcium hydroxide nanoparticles. Langmuir 23 (5):2330–38. doi:10.1021/la062023i.
  • Galvan-Ruiz, M., J. Hernandez, L. Banos, J. Noriega-Montes, and M. E. Rodrguez-Garcia. 2009. Characterization of calcium carbonate, calcium oxide, and calcium hydroxide as starting point to the improvement of lime for their use in construction. Journal of Materials of Civil Engineering 21 (11):694–96. doi:10.1061/(ASCE)0899-1561.
  • Giorgi, R., L. Dei, and P. Baglioni. 2000. A new method for consolidating wall paintings based on dispersions of lime. Studies in Conservation 45 (3):154–61.
  • Karatasios, I., P. Theoulakis, A. Kalagri, A. Sapalidis, and V. Kilikoglou. 2009. Evaluation of consolidation treatments of marly limestones used in archaeological monuments. Construction and Building Materials 23 (8):2803–12. doi:10.1016/j.conbuildmat.2009.03.001.
  • Kyzas, Z., G. Bomis, R. I. Kosheleva, E. K. Efthimiadou, E. P. Favvas, M. Kostoglou, and A. C. Mitropoulos. 2018. Nanobubbles effect on heavy metal ions adsorption by activated carbon. Chemical Engineering Journal 356:91–97. doi:10.1016/j.cej.2018.09.019.
  • Lopez-Arce, P., L. S. Gomez-Villalba, S. Martinez-Ramirez, M. Alvaez de Buergo, and M. Fort. 2011. Influence of relative humidity on the carbonation of calcium hydroxide nanoparticles and the formation of calcium carbonate polymorphs. Powder Technology 205:263–69. doi:10.1016/j.powtec.2010.09.026.
  • Maravelaki-Kalaitzaki, P., N. Kallithrakas-Kontos, Z. Agioutantis, S. Maurigiannakis, and S. Korakaki. 2008. A comparative study of porous limestones treated with silicon-based strengthening agents. Progress in Organic Coating 62 (1):49–60. doi:10.1016/j.porgcoat.2007.09.020.
  • Michailidi, E. D., G. Bomis, A. Varoutoglou, E. K. Efthimiadou, A. C. Mitropoulos, and E. P. Favvas. 2019. Fundamentals and applications of nanobubbles. In Advanced low-cost separation techniques in interface science, ed. G. Z. Kyzas, and A. C. Mitropoulos, vol. 30:69-98. Amsterdam, Netherlands: Academic Press.
  • Michailidi, E. D., G. Bomis, A. Varoutoglou, G. Z. Kyzas, G. Mitrikas, A. C. Mitropoulos, E. K. Efthimiadou, and E. P. Favvas. 2020. Bulk nanobubbles: Production and investigation of their formation/stability mechanism. Journal of Colloid and Interface Science 564:371–80. doi:10.1016/j.jcis.2019.12.093.
  • Michalopoulou, A., E. P. Favvas, A. C. Mitropoulos, P. Maravelaki, V. Kilikoglou, and I. Karatasios. 2018. A comparative evaluation of bottom-up and top-down methodologies for the synthesis of calcium hydroxide nanoparticles for the consolidation of architectural monuments. Materials Today: Proceedings 5 (14):27425–33. doi:10.1016/j.matpr.2018.09.060.
  • Mitropoulos, A. C., and G. Bomis 2016. European Patent 2995369A1
  • Mitropoulos, A. C., K. L. Stefanopoulos, E. P. Favvas, E. F. Vansant, and N. Hankins. 2015. On the formation of nanobubbles in vycor porous glass during desorption of halogenated hydrocarbons. Scientific Reports 5:10943. doi:10.1038/srep10943.
  • Nagai, T., T. Ito, T. Hattori, and T. Yamanaka. 2000. Compression mechanism and amorphization of portlandite. Physics and Chemistry of Minerals 27 (7):462–66. doi:10.1007/s002690000084.
  • Natali, I., M. L. Saladin, F. andriula, D. Chillu, E. Caponetti, E. Carretti, and L. Dei. 2014. Consolidation and protection by nanolime: Recent advances for the conservation of the graffiti, Carceri dello Steri Palermo and of the 18th century lunettes, SS.Giuda e Simone Cloister, Corniola (Empoli). Journal of Cultural Heritage 15:151–58. doi:10.1016/j.culher.2013.03.002.
  • Oh, S. H., and J.-M. Kim. 2017. Generation and stability of bulk nanobubbles. Langmuir 33:3818–23. doi:10.1021/acs.langmuir.7b00510.
  • Ohgaki, K., N. Q. Khanh, Y. Joden, A. Tsuji, and T. Nakagawa. 2010. Physicochemical approach to nanobubble solutions. Chemical Engineering Science 65 (3):1296–300. doi:10.1016/j.ces.2009.10.003.
  • Otero, J., V. Starinieri, and A. E. Charola. 2018. Nanolime for the consolidation of lime mortars: A comparison of three available products. Construction and Building Materials 181:394–407. doi:10.1016/j.conbuildmat.2018.06.055.
  • Otero, J., V. Starinieri, and A. E. Charola. 2019. Influence of substrate pore structure and nanolime particle size on the effectiveness of nanolime treatments. Construction and Building Materials 181:394–407. doi:10.1016/j.conbuildmat.2019.03.130.
  • Polte, J. 2015. Fundamental growth principles of colloidal metal nanoparticles – A new perspective. CrystEngComm 17:6809–30. doi:10.1039/c5ce01014d.
  • Rodriguez-Navarro, C., A. Suzuki, and E. Ruiz-Agudo. 2013. Alcohol dispersions of calcium hydroxide nanoparticles for stone conservation. Langmuir 29 (36):11457–70. doi:10.1021/la4017728.
  • Rodriguez-Navarro, C., and E. Ruiz-Agudo. 2017. Nanolimes: From synthesis to application. Pure and Applied Chemistry 90 (3):11457–70. doi:10.1515/pac-2017-0506.
  • Rodriguez-Navarro, C., I. Vettori, and E. Ruiz-Agudo. 2016. Kinetics and mechanism of calcium hydroxide conversion into calcium alkoxides: Implications in heritage conservation using nanolimes. Langmuir 32:5183–94. doi:10.1021/acs.langmuir.6b01065.
  • Taglieri, G., V. Daniele, L. Masera, and A. Mignemi. 2019. Innovative and green nanolime treatment tailored to consolidate the original mortar of the façade of a medieval building in L’aquila (Italy). Constructin and Building Materials 221:643–50. doi:10.1016/j.conbuildmat.2019.06.110.
  • Thanh, N. T. K., N. Maclean, and S. Mahiddine. 2014. Mechanisms of nucleation and growth of nanoparticles in solution. Chemistry Review 114 (15):7610–30. doi:0.1021/cr400544s.
  • Verganelaki, A., C. Kapridaki, and P. Maravelaki-Kalaitzaki. 2015. Modified tetraethoxysilane with nanocalcium oxalate in one-pot synthesis for protection of building materials. Industrial & Engineering Chemistry Research 54 (29):7195–206. doi:10.1021/acs.iecr.5b00247.
  • Zhang, M., J. R. T. Sheddon, and S. G. Lemay. 2019. Nanoparticle–nanobubble interactions: Charge inversion and re-entrant condensation of amidine latex nanoparticles driven by bulk nanobubbles. Journal of Colloids and Interface Science 538:605–10. doi:10.1016/j.jcis.2018.11.110.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.