Publication Cover
International Journal of Architectural Heritage
Conservation, Analysis, and Restoration
Volume 15, 2021 - Issue 8
399
Views
8
CrossRef citations to date
0
Altmetric
Research Article

Damage Assessment of Historic Masonry Churches Exposed to Slow-moving Landslides

, , &
Pages 1170-1195 | Received 19 Dec 2019, Accepted 18 Jul 2020, Published online: 18 Aug 2020

References

  • Antronico, L., L. Borrelli, R. Coscarelli, and G. Gullà. 2015. Time evolution of landslide damages to buildings: The case study of Lungro (Calabria, Southern Italy). Bulletin of Engineering Geology and the Environment 74:47–59. doi:https://doi.org/10.1007/s10064-014-0591-y.
  • Ayensa, A., B. Beltran, E. Ibarz, and L. Gracia. 2015. Application of a new methodology based on Eurocodes and finite element simulation to the assessment of a Romanesque church. Construction and Building Materials 101 (1):287–97. doi:https://doi.org/10.1016/j.conbuildmat.2015.10.115.
  • Bianchini, S., A. Ciampalini, F. Raspini, F. Bardi, F. Di Traglia, S. Moretti, and N. Casagli. 2015. Multi-temporal evaluation of landslide movements and impacts on buildings in San Fratello (Italy) by means of C-Band and X-Band PSI data. Pure and Applied Geophysics 172: 3043-3065. doi: https://doi.org/10.1007/s00024-014-0839-2.
  • Boscardin, M. D., and E. G. Cording. 1989. Building response to excavation induced settlement. Journal of Geotechnical Engineering 115:1–21. doi:https://doi.org/10.1061/(ASCE)0733-9410(1989)115:1(1).
  • Burd, H. J., G. T. Houlsby, C. E. Augarde, and G. Liu. 2000. Modelling tunnelling-induced settlement of masonry buildings. Proceedings of the Institution of Civil Engineers - Geotechnical Engineering 143 (1):17–29. doi:https://doi.org/10.1680/geng.2000.143.1.17.
  • Burland, J. B., B. B. Broms, and V. F. B. De Mello. 1977. Behaviour of foundations and structures. Proceedings of 9th International Conference Soil Mechanics and Foundation Engineering (ICSMFE), Tokyo, vol. 2, 495–546. Tokyo, Japan: Japanese Geotechnical Society.
  • Burland, J. B., and C. P. Wroth 1974. Settlements on buildings and associated damage. Proceedings of Conference on Settlement of structures, Cambridge, 611–54. London, UK: Pentech Press.
  • Calabresi, G. 2013. The role of geotechnical engineers in saving monuments and historic sites. Kerisel lecture. In Proceedings of the 18th international conference on soil mechanics and geotechnical engineering, ed. P. Delage, J. Desrues, R. Frank, A. Puech, and F. Schlosser, 71–83. Paris, France: Presses des Ponts.
  • Canuti, C., S. Carbonari, A. Dall’Asta, L. Dezi, F. Gara, G. Leoni, M. Morici, E. Petrucci, A. Prota, and A. Zona. 2019. Post-earthquake damage and vulnerability assessment of Churches in the Marche Region struck by the 2016 Central Italy seismic sequence. International Journal of Architectural Heritage 1–22. doi:https://doi.org/10.1080/15583058.2019.1653403.
  • Cigna, F., V. Liguori, C. Del Ventisette, and N. Casagli. 2013. Landslide impacts on Agrigento’s Cathedral imaged with radar interferometry. In Landslide science and practice, ed. C. Margottini, P. Canuti, and K. Sassa, 475–81. Berlin, Heidelberg: Springer.
  • Cooper, A. H. 2008. The classification, recording, databasing and use of information about building damage caused by subsidence and landslides. Quarterly Journal of Engineering Geology & Hydrogeology 41:409–24. doi:https://doi.org/10.1144/1470-9236/07-223.
  • Cruden, D. M., and D. J. Varnes. 1996. Landslide types and processes. In Landslides: Investigation and mitigation, ed. A. K. Turner and R. L Schuster, Transportation Research Board, Special Report 247, 36–75. Washington, DC: National Academy of Sciences.
  • D’Altri, A. M., S. De Miranda, G. Castellazzi, V. Sarhosis, J. Hudson, and D. Theodossopoulos. 2019. Historic barrel vaults undergoing differential settlements. International Journal of Architectural Heritage 1–14. doi:https://doi.org/10.1080/15583058.2019.1596332.
  • da Porto, F., B. Silva, C. Costa, and C. Modena. 2012. Macro-scale analysis of damage to churches after earthquake in Abruzzo (Italy) on April 6, 2009. Journal of Earthquake Engineering 16 (6):739–58. doi:https://doi.org/10.1080/13632469.2012.685207.
  • De Matteis, G., E. Criber, and G. Brando. 2016. Damage probability matrices for three-nave masonry churches in Abruzzi after the 2009 L’Aquila earthquake. International Journal of Architectural Heritage 10 (2–3):120–45.
  • de Vent, I. 2011. Structural damage in masonry. Developing diagnostic decision support. PhD diss., Delft University of Technology.
  • Doglioni, F., A. Moretti, and V. Petrini. 1994. Le chiese e il terremoto. Trieste, IT: Lint Press (in Italian). National Research Council.
  • Drougkas, A., E. Verstrynge, P. Szekér, G. Heirman, L. E. Bejarano-Urrego, G. Giardina, and K. Van Balen. 2019. Numerical modeling of a Church nave wall subjected to differential settlements: Soil-structure interaction, time-dependence and sensitivity analysis. International Journal of Architectural Heritage 1–18. doi:https://doi.org/10.1080/15583058.2019.1602682.
  • Federici, P. R., and A. Chelli. 2007. Atlante dei Centri Abitati Instabili della Liguria. IV. Provincia di Imperia [Atlas of the unstable inhabited centres of Liguria. IV. Imperia province]. Regione Liguria, Genova, Italy.
  • Federici, P. R., F. Baldacci, A. Petresi, and A. Serani. 2001. Atlante dei Centri Abitati Instabili della Liguria. I. Provincia della Spezia [Atlas of the unstable inhabited centres of Liguria. I. La Spezia province]. Regione Liguria, Genova, Italy.
  • Federici, P. R., M. Capitani, A. Chelli, N. Del Seppia, and A. Serani. 2004. Atlante dei Centri Abitati Instabili della Liguria. II. Provincia di Genova [Atlas of the unstable inhabited centres of Liguria. II. Genova province]. Regione Liguria, Genova, Italy.
  • Federici, P. R., M. Capitani, A. Serani, and S. Stano. 2006. Atlante dei Centri Abitati Instabili della Liguria. III. Provincia di Savona [Atlas of the unstable inhabited centres of Liguria. III. Savona province]. Regione Liguria, Genova, Italy.
  • G.U. no. 120. May 25, 1989. (suppl. ord. no. 38). Law no. 183 of 18/ 05/1989,Norme per il riassetto organizzativo e funzionale della difesa del suolo.
  • G.U. no. 45. February 24, 2004. (suppl. ord. no. 28). Legislative Decree no. 42 of 22/ 01/2004,Codice dei beni culturali e del paesaggio, ai sensi dell’articolo 10 della legge 6 luglio 2002, n. 137.
  • Galassi, S., G. Misseri, L. Rovero, and G. Tempesta. 2018. Failure modes prediction of masonry voussoir arches on moving supports. Engineering Structures 173:706–17. doi:https://doi.org/10.1016/j.engstruct.2018.07.015.
  • Geoportale Regione Liguria. Visualizzatore Cartografico. Accessed January 20, 2020. https://geoportal.regione.liguria.it.
  • Giardina, G., M. A. N. Hendriks, and J. G. Rots. 2015a. Sensitivity study on tunnelling induced damage to a masonry façade. Engineering Structures 89:111–29. doi:https://doi.org/10.1016/j.engstruct.2015.01.042.
  • Giardina, G., M. J. DeJong, and R. J. Mair. 2015b. Interaction between surface structures and tunnelling in sand: Centrifuge and computational modelling. Tunnelling and Underground Space Technology 50:465–78. doi:https://doi.org/10.1016/j.tust.2015.07.016.
  • Grünthal, G. 1998. European Macroseismic Scale 1998 (EMS-98), Cahiers du Centre Europèen de Gèodynamique et de Seismologie 15. Luxembourg: Centre Europèen de Gèodynamique et de Seismologie.
  • Guerreiro, L., J. Azevedo, J. Proenca, R. Bento, and M. Lopes. 2000. Damage in ancient churches during the 9th of July 1998 Azores earthquake. Proceedings of the 12th World Conference on Earthquake Engineering, Auckland, New Zealand, paper no. 780.
  • Guzzetti, F., M. Cardinali, P. Reichenbach, F. Cipolla, C. Sebastiani, M. Galli, and P. Salvati. 2004. Landslides triggered by the 23 November 2000 rainfall event in the Imperia Province, Western Liguria, Italy. Engineering Geology 73 (2):229–45. doi:https://doi.org/10.1016/j.enggeo.2004.01.006.
  • Huerta, S. 2001. Mechanics of masonry vaults: The equilibrium approach. In Proceedings of the 3rd international seminar of historical constructions, ed. P. B. Lourenço, and P. Roca, 47–70. Guimarães, Portugal: University of Minho.
  • ISPRA: Italian Landslide Inventory Project (IFFI). 2007. Accessed June 26, 2019. http://www.progettoiffi.isprambiente.it.
  • Lagomarsino, S. 2012. Damage assessment of churches after L’Aquila earthquake (2009). Bulletin of Earthquake Engineering 10 (1):73–92. doi:https://doi.org/10.1007/s10518-011-9307-x.
  • Lagomarsino, S., and S. Podestà. 2004a. Seismic vulnerability of ancient churches. Part 1: Damage assessment and emergency planning. Earthquake Spectra 20 (2):377–94. doi:https://doi.org/10.1193/1.1737735.
  • Lagomarsino, S., and S. Podestà. 2004b. Seismic vulnerability of ancient churches. Part 2: Statistical analysis of surveyed data and methods for risk analysis. Earthquake Spectra 20 (2):395–412. doi:https://doi.org/10.1193/1.1737736.
  • Lagomarsino, S., and S. Podestà. 2004c. Damage and vulnerability assessment of churches after the 2002 Molise, Italy, earthquake. Earthquake Spectra 20 (S1):S271–S283. doi:https://doi.org/10.1193/1.1767161.
  • Lancellotta, R. 2013. La torre Ghirlandina: Una storia di interazione struttura-terreno. XI Croce Lecture. Rivista Italiana di Geotecnica 47 (2):7–37. (in Italian).
  • Margottini, C., D. Spizzichino, and A. Sonnessa. 2013. Landslide risk and monitoring system for conservation of Vardzia monastery, Georgia. In Geotechnical engineering for the preservation of monuments and historic sites, ed. E. Bilotta, A. Flora, S. Lirer, and C. Viggiani, 549–58. London, UK: CRC Press (Taylor & Francis Group).
  • McInerney, J., and M. J. Dejong. 2015. Discrete element modeling of groin vault displacement capacity. International Journal of Architectural Heritage 9 (8):1037–49. doi:https://doi.org/10.1080/15583058.2014.923953.
  • Nicodemo, G. 2017. Vulnerability analysis of buildings in areas affected by slow-moving landslides and subsidence phenomena. PhD diss., University of Salerno.
  • Ochsendorf, J. A. 2006. The masonry arch on spreading supports. Structural Engineer 84 (2):29–35.
  • Palmisano, F., C. Vitone, and F. Cotecchia. 2016. Landslide damage assessment at the intermediate to small scale. In Landslides and engineered slopes experience, theory and practice, ed. S. Aversa, L. Cascini, and C. Scavia, Vol. 1, 1549–57. London, UK: CRC Press.
  • Penna, A., C. Calderini, L. Sorrentino, C. F. Carocci, E. Cescatti, R. Sisti, A. Borri, C. Modena, and A. Prota. 2019. Damage to churches in the 2016 central Italy earthquakes. Bulletin of Earthquake Engineering 17 (10):5763–90. doi:https://doi.org/10.1007/s10518-019-00594-4.
  • Piano di Bacino Stralcio per l’Assetto Idrogeologico, Regione Liguria. 2017. Carte della Suscettività al Dissesto (Landslide Susceptibility Maps). Accessed October 25, 2018. http://www.pianidibacino.ambienteinliguria.it/.
  • Piano Stralcio per l’Assetto Idrogeologico, Autorità di bacino distrettuale del fiume Po. 2017. Atlante dei Rischi Idraulici e Idrogeologici [Atlas of hydraulic and hydrogeological risks]. Accessed October 25, 2018. http://www.pai.adbpo.it/.
  • Podestà, S., A. Brignola, E. Curti, S. Parodi, and A. Lemme. 2010. Damage assessment and seismic vulnerability of churches: The Abruzzo earthquake. Ingegneria Sismica 2 (1):21–35. in Italian.
  • QGIS. 2017. Open source geographic information system. Accessed May 3, 2018. https://qgis.org/en/site/.
  • Regione Liguria e Segretariato Regionale del MiBACT per la Liguria. 2017. Vincoli architettonici, archeologici, paesaggistici. Accessed May 3, 2018. http://www.liguriavincoli.it/.
  • Romão, X., A. A. Costa, E. Paupério, H. Rodrigues, R. Vicente, H. Varum, and A. Costa. 2013. Field observations and interpretation of the structural performance of constructions after the 11 May 2011 Lorca earthquake. Engineering Failure Analysis 34:670–92. doi:https://doi.org/10.1016/j.engfailanal.2013.01.040.
  • Rossi, M., C. Calvo Barentin, T. Van Mele, and P. Block. 2017. Experimental study on the behaviour of masonry pavilion vaults on spreading supports. Structures 11:110–20. doi:https://doi.org/10.1016/j.istruc.2017.04.008.
  • Saloustros, S., L. Pelà, P. Roca, and J. Portal. 2015. Numerical analysis of structural damage in the church of the Poblet Monastery. Engineering Failure Analysis 48:41–61. doi:https://doi.org/10.1016/j.engfailanal.2014.10.015.
  • Sánchez, A. R., R. Meli, and M. M. Chávez. 2016. Structural monitoring of the Mexico City cathedral (1990-2014). International Journal of Architectural Heritage 10 (2–3):254–68.
  • Soccodato, F. M., E. Martini, L. Tortoioli, and A. M. Mazzi. 2013. The preservation of historical, archaeological and artistic heritage of Orvieto: An interdisciplinary project. In Geotechnical engineering for the preservation of monuments and historic sites, ed. E. Bilotta, A. Flora, S. Lirer, and C. Viggiani, 683–96. London, UK: CRC Press (Taylor & Francis Group).
  • Son, M., and J. Cording. 2007. Evaluation of building stiffness for building response analysis to excavation-induced ground movements. Journal of Geotechnical and Geoenvironmental Engineering 133 (8):995–1002. doi:https://doi.org/10.1061/(ASCE)1090-0241(2007)133:8(995).
  • Spizzichino, D., C. Margottini, and L. M. Puzzilli. 2012. Landslide risk assessment and management in the archaeological site of Machu Picchu (Peru). In Geotechnical engineering for the preservation of monuments and historic sites, ed. E. Bilotta, A. Flora, S. Lirer, and C. Viggiani, 697–707. London, UK: CRC Press (Taylor & Francis Group).
  • Taliercio, A., and L. Binda. 2007. The Basilica of San Vitale in Ravenna: Investigation on the current structural faults and their mid-term evolution. Journal of Cultural Heritage 8:99–118. doi:https://doi.org/10.1016/j.culher.2006.09.005.
  • Torres, B., E. Bertolesi, J. J. Moragues, P. A. Calderón, and J. M. Adam. 2019. Experimental investigation of a full-scale timbrel masonry cross vault subjected to vertical settlement. Construction and Building Materials 221:421–32. doi:https://doi.org/10.1016/j.conbuildmat.2019.06.015.
  • Trigila, A., C. Iadanza, M. Bussettini, and B. Lastoria. 2018. Dissesto idrogeologico in Italia: Pericolosità e indicatori di rischio. Rapporti 287/2018, Istituto Superiore per la Protezione e la Ricerca Ambientale – ISPRA (in Italian). Accessed September 15, 2019. https://www.isprambiente.gov.it/files2018/pubblicazioni/rapporti/rapporto-dissesto-idrogeologico/Rapporto_Dissesto_Idrogeologico_ISPRA_287_2018_Web.pdf.
  • Van Mele, T., J. McInerney, M. DeJong, and P. Block. 2012. Physical and computational discrete modelling of masonry vault collapse. Proceedings of 8th International Conference on Structural Analysis of Historical Constructions, 2552–60. Wroclaw, Poland.
  • Varnes, D. J. 1978. Slope movements and types of processes. In Landslides: Analysis and control, ed. R. L. Schuster and R. J. Krizek, Transportation Research Board, Special Report 176, 11-13. Washington, DC: National Academy of Sciences.
  • Zampieri, P., F. Faleschini, M. A. Zanini, and N. Simoncello. 2018. Collapse mechanisms of masonry arches with settled springing. Engineering Structures 156:363–74. doi:https://doi.org/10.1016/j.engstruct.2017.11.048.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.