253
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Monitoring of Induced Groundborne Vibrations in Cultural Heritage Buildings: Miscellaneous Errors and Aliasing through Integration and Filtering

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 205-228 | Received 12 Oct 2019, Accepted 21 Jul 2020, Published online: 15 Nov 2020

References

  • Andrews, J., D. Buehler, H. Gill, and W. L. Bender. 2013. Transportation and construction vibration – Guidance manual September. California Department of Transportation, Division of Environmental Analysis, Environmental Engineering.
  • Bormann, P., and E. Wielandt. 2013. Seismic signals and noise. In New Manual of Seismological Observatory Practice 2 (NMSOP2), ed. P. Bormann, 1–62. Potsdam: Deutsches GeoForschungsZentrum GFZ. doi:10.2312/GFZ.NMSOP-2_ch4.
  • Boroschek, R. L., and D. Legrand. 2006. Tilt motion effects on the double-time integration of linear accelerometers: An experimental approach. Bulletin of the Seismological Society of America 96 (6):2072–89. doi:10.1785/0120050167.
  • Brandt, A. 2011. Noise and vibration analysis signal analysis and experimental procedures. West Sussex, UK: Wiley.
  • Brandt, A., and R. Brincker. 2014. Integrating time signals in frequency domain – Comparison with time domain integration. Measurement 58:511–19. doi:10.1016/j.measurement.2014.09.004.
  • BS 5228-2. 2009. Code of practice for noise and vibration control on construction and open sites – Part 2: Vibration. British Standard, BSI.
  • BS 7385-2. 1993. Evaluation and measurement for vibration in buildings – Part 2: Guide to damage levels from groundborne vibration. British Standard, BSI.
  • Casas, J. R. 2009. A probabilistic fatigue strength model for brick masonry under compression. Construction and Building Materials 23 (8):2964–72. doi:10.1016/j.conbuildmat.2009.02.043.
  • Cavalagli, N., G. Comanducci, and F. Ubertini. 2018. Earthquake-induced damage detection in a Monumental Masonry bell-tower using long-term dynamic monitoring data. Journal of Earthquake Engineering 22 (sup1):96–119. doi:10.1080/13632469.2017.1323048.
  • Clementi, F., A. Pierdicca, A. Formisano, F. Catinari, and S. Lenci. 2017. Numerical model upgrading of a historical masonry building damaged during the 2016 Italian earthquakes: The case study of the Podestà palace in Montelupone (Italy). Journal of Civil Structural Health Monitoring 7 (5):703–17. doi:10.1007/s13349-017-0253-4.
  • Clementi, F., A. Pierdicca, G. Milani, V. Gazzani, M. Poiani, and S. Lenci. 2018. Numerical model upgrading of ancient bell towers monitored with a wired sensors network. Proceedings of the 10th International Masonry Conference, 10th IMC (222279):2308–18.
  • De Stefano, A., E. Matta, and P. Clemente. 2016. Structural health monitoring of historical heritage in Italy: Some relevant experiences. Journal of Civil Structural Health Monitoring 6 (1):83–106. doi:10.1007/s13349-016-0154-y.
  • Di Lorenzo, G., A. Formisano, L. Krstevska, and R. Landolfo. 2019. Ambient vibration test and numerical investigation on the St. Giuliano church in Poggio Picenze (L’aquila, Italy). Journal of Civil Structural Health Monitoring 9 (4):477–90. doi:10.1007/s13349-019-00346-7.
  • DIN 4150-3. 1986. Structural vibration in buildings – Effects on structures. Berlin, Germany: Deutsches Institut für Normung.
  • DIN 45669-2. 1995. Mechanical vibration and shock measurement, Part 1 measuring equipment, Part 2 measurement procedure. Berlin, Germany: Deutsches Institut für Normung.
  • Ewins, D. 2000. Modal testing: Theory, practice and application. 2nd ed. Baldock, Hertfordshire, England: Research Studies Press.
  • García-Macías, E., and F. Ubertini. 2019. Seismic interferometry for earthquake-induced damage identification in historic masonry towers. Mechanical Systems and Signal Processing 132:380–404. doi:10.1016/j.ymssp.2019.06.037.
  • Gentile, C., M. Guidobaldi, and A. Saisi. 2016. One-year dynamic monitoring of a historic tower: Damage detection under changing environment. Meccanica 51 (11):2873–89. doi:10.1007/s11012-016-0482-3.
  • Gentile, C., and A. Saisi. 2007. Ambient vibration testing of historic masonry towers for structural identification and damage assessment. Construction and Building Materials 21 (6):1311–21. doi:10.1016/j.conbuildmat.2006.01.007.
  • Gentile, C., and A. Saisi. 2013. Operational modal testing of historic structures at different levels of excitation. Construction and Building Materials 48:1273–85. doi:10.1016/j.conbuildmat.2013.01.013.
  • Giron-Sierra, J. M. 2018. Digital signal processing with Matlab examples, Volume 1: Signals and data, filtering, non-stationary signals, modulation. Springer. doi:10.1007/978-981-10-2534-1.
  • Hanson, C. E., D. A. Towers, and L. D. Meister. 2006. Transit noise and vibration impact assessment FTA-VA-90-1003-06 report. Washington DC, USA: U.S. Department of Transportation, Federal Transit Administration.
  • ICOMOS/ISCARSAH Committee. 2005. Recommendations for the analysis, conservation and structural restoration of architectural heritage. www.icomos.org.
  • ISO 4866. 1990. Mechanical vibration and shock – Vibration of buildings – Guidelines for the measurement of vibrations and evaluation of their effects on buildings. Geneva, Switzerland: International Organization for Standardization.
  • ISO 4866 - Amendment 2. 1996. Mechanical vibration and shock – Vibration of buildings guidelines for the measurement of vibrations and their effects on buildings. Geneva, Switzerland: International Organization for Standardization.
  • Jones, C. J., D. J. Thompson, and M. Petyt. 2002. A model for ground vibration from railway tunnels. Proceedings of the Institution of Civil Engineers, Transportation 153 (2):121–29. doi:10.1680/tran.153.2.121.38918.
  • Kita, A., N. Cavalagli, and F. Ubertini. 2019. Temperature effects on static and dynamic behavior of Consoli Palace in Gubbio, Italy. Mechanical Systems and Signal Processing 120:180–202. doi:10.1016/j.ymssp.2018.10.021.
  • Konon, W., and J. R. Schuring. 1985. Vibration criteria for historic buildings. Journal of Construction Engineering and Management 111 (3):208–15. doi:10.1061/(ASCE)0733-9364(1985)111:3(208).
  • Krstevska, L., L. Tashkov, N. Naumovski, G. Florio, A. Formisano, A. Fornaro, and R. Landolfo. 2010. In-situ experimental testing of four historical buildings damaged during the 2009 L’Aquila earthquake. COST ACTION C26: Urban Habitat Constructions under Catastrophic Events - Proceedings of the Final Conference, Naples, Italy, 427–32.
  • National Research Council. 1977. Guidelines for preparing environmental impact statements on noise. Washington, DC: The National Academies Press. doi:10.17226/20340.
  • Oppenheim, A. V., and R. W. Schafer. 2014. Discrete-time signal processing Chapter 7. Harlow, Essex, UK: Pearson.
  • Overschee, P., and B. Moor. 1996. Subspace identification for linear systems – Theory, implementation, applications. Kluwer Academic Publishers, Springer US. ISBN 0-7923-9717-7.
  • Peterson, A. P. G. 1980. Handbook of noise measurement. Concord, MA,USA: General Radio Company.
  • Pierdicca, A., F. Clementi, A. Fortunati, and S. Lenci. 2019. Tracking modal parameters evolution of a school building during retrofitting works. Bulletin of Earthquake Engineering 17 (2):1029–52. doi:10.1007/s10518-018-0483-9.
  • Pierdicca, A., F. Clementi, D. Isidori, E. Concettoni, C. Cristalli, and S. Lenci. 2016. Numerical model upgrading of a historical masonry palace monitored with a wireless sensor network. International Journal of Masonry Research and Innovation 1 (1):74. doi:10.1504/ijmri.2016.074748.
  • Rainieri, C., G. Fabbrocino, and G. M. Verderame. 2013. Non-destructive characterization and dynamic identification of a modern heritage building for serviceability seismic analyses. NDT and E International 60:17–31. doi:10.1016/j.ndteint.2013.06.003.
  • Ramos, L. 2007. Damage identification on masonry structures based on vibration signatures. PhD Thesis, University of Minho, Portugal. http://hdl.handle.net/1822/7380.
  • Rodrigues, J. 2004. Identificação Modal Estocástica, Métodos de Análise e Aplicações em Estruturas de Engenharia Civil. PhD Thesis, Engineering Faculty of University of Porto, Portugal (in Portuguese).
  • Rouphael, T. J. 2009. Chapter 7 - Uniform sampling of signals and automatic gain control. In RF and digital signal processing for software-defined radio, 199–234. Newnes. doi:10.1016/B978-0-7506-8210-7.00007-2.
  • Saisi, A., C. Gentile, and M. Guidobaldi. 2015. Post-earthquake continuous dynamic monitoring of the Gabbia Tower in Mantua, Italy. Construction and Building Materials 81:101–12. doi:10.1016/j.conbuildmat.2015.02.010.
  • Saurenman, H. J., J. T. Nelson, and G. P. Wilson. 1982. Handbook of urban rail noise and vibration control, Report DOT-TSC-UMTA-81–72. Washington DC, USA: US Department of Transportation, Urban Mass Transportation Administration.
  • Shokravi, H., and N. Bakhary. 2017. Comparative analysis of different weight matrices in subspace system identification for structural health monitoring, IOP conference series. Materials Science and Engineering 271:012092. doi:10.1088/1757-899x/271/1/012092.
  • SIPA. 2011. Information system for architectural heritage, Parish Church of the Angels, IPA. 00003199 (in Portuguese) http://www.monumentos.gov.pt.
  • Siskind, D. E., M. S. Stagg, J. W. Kopp, and C. H. Dowding. 1980. Structure response and damage produced by ground vibration from surface mine blasting, United States Bureau of Mines. Report of Investigations No. RI. 8507.
  • SN 604312A. 1992. Effects of vibration on construction. Winterthur, Switzerland: Swiss Standards Association.
  • SVS. 2006. ARTeMIS extractor pro user manual, release 3.5. Aalborg, Denmark: Structural Vibration Solutions.
  • Thompson, D. J., C. Jones, and P. Gautier. 2009. Railway noise and vibration: Mechanisms, modelling and means of control. Amsterdam: Elsevier.
  • Tsogka, C., E. Daskalakis, G. Comanducci, and F. Ubertini. 2017. The stretching method for vibration-based structural health monitoring of civil structures. Computer-Aided Civil and Infrastructure Engineering 32 (4):288–303. doi:10.1111/mice.12255.
  • Venanzi, I., A. Kita, N. Cavalagli, L. Ierimonti, and F. Ubertini. 2019. Continuous OMA for damage detection and localization in the Sciri Tower in Perugia, Italy. 8th IOMAC - International Operational Modal Analysis Conference, Proceedings, Copenhagen, Denmark, 127–36.
  • Worden, K. 1990. Data processing and experiment design for the restoring force surface method, part I: Integration and differentiation of measured time data. Mechanical Systems and Signal Processing 4 (4):295–319. doi:10.1016/0888-3270(90)90010-I.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.