Publication Cover
International Journal of Architectural Heritage
Conservation, Analysis, and Restoration
Volume 16, 2022 - Issue 8
468
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Effects of Brick Pattern on the Static Behavior of Masonry Vaults

ORCID Icon, &
Pages 1199-1219 | Received 10 Apr 2020, Accepted 29 Dec 2020, Published online: 24 Jan 2021

References

  • Alberti, L. B. 1450. De re aedificatoria. Firenze: Editio princeps, 1485 opera magistri Nicolai Laurentii Alamani.
  • Alforno, M., C. Calderini, A. Monaco, and F. Venuti. 2019. Numerical modelling of masonry vaults with different brick pattern. In: Proceedings of the IASS 60th anniversary symposium (IASS Symposium 2019) - 9th International conference on Texile Composites and Inflatable Structures (IASS Annual Symposium 2019 - Structural Membranes 2019), Form and Force, Barcelona, Spain: 1626-1633.
  • Beatini, V., G. Royer Carfagni, and A. Tasora. 2017. A regularized non-smooth contact dynamics approach for architectural masonry structures. Computer & Structures 187:88–100.
  • Beatini, V., G. Royer-Carfagni, and A. Tasora. 2018. The role of frictional contact of constituent blocks on the stability of masonry domes. Proceedings of the Royal Society A. Mathematical, Physical and Engineering Sciences 474 (2209):1–21. doi:https://doi.org/10.1098/rspa.2017.0740.
  • Beatini, V., G. Royer-Carfagni, and A. Tasora. 2019. Modeling the shear failure of segmental arches. International Journal of Solids and Structures 158:21–39. doi:https://doi.org/10.1016/j.ijsolstr.2018.08.023.
  • Benvenuto, E. 1981. La scienza delle costruzioni e il suo sviluppo storico. Firenze: Sansoni.
  • Benvenuto, E. 2012. An introduction to the history of structural mechanics. New York: Springer Science & Business Media.
  • Boni, C. 2018. Analysis of masonry vaults with discrete element method: Brick pattern effect. Italy: MSc Thesis, University of Parma. Supervisors: Prof. Ferretti, D. & Dr. Lenticchia, E.
  • Boni, C., D. Ferretti, E. Lenticchia, and A. Tasora. 2019. DEM modelling of masonry vaults: Influence of brick pattern and infill on stability during supports displacements. In: Proceedings of the IASS 60th anniversary symposium (IASS Symposium 2019) - 9th International conference on Texile Composites and Inflatable Structures (IASS Annual Symposium 2019 - Structural Membranes 2019), Form and Force, Barcelona, Spain: 1555-1562.
  • Boothby, T. E. 2001. Analysis of masonry arches and vaults. Progress in Structural Engineering and Materials 3 (3):246–56. doi:https://doi.org/10.1002/pse.84.
  • Breymann, G. A. 1849. Allgemeine Bau-Constructions-Lehre, mit besonderer Beziehung auf das Hochbauwesen ein Leitfaden zu Vorlesungen und zum Selbstunterrichte. Stuttgart: Hoffmann.
  • Chen, S., and K. Bagi. 2020. Crosswise tensile resistance of masonry patterns due to contact friction. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. doi:https://doi.org/10.1098/rspa.2020.0439.
  • Chetouane, B., F. Dubois, M. Vinches, and C. Bohatier. 2005. NSCD discrete element method for modelling masonry structures. International Journal for Numerical Methods in Engineering 64:65–94. doi:https://doi.org/10.1002/nme.1358.
  • Chevalley, G. 1924. Elementi di tecnica dell’architettura: Materiali da costruzione e grosse strutture. Torino: Pasta.
  • Choisy, A. 1873. L’art de bâtir chez les Romains. Paris: Ducher et Cie.
  • Choisy, A. 1883. L’Art de bâtir chez les Byzantins. Paris: Librairie de la Société Anonyme de Publications Periodiques.
  • Coïsson, E., L. Ferrari, D. Ferretti, and M. Rozzi. 2016. Non-smooth dynamic analysis of local seismic damage mechanisms of the San Felice Fortress in Northern Italy. Procedia Engineering 161:451–57.
  • Como, M. 2013. Statics of historic masonry constructions. Berlin, Heidelberg: Springer.
  • D’Altri, A. M., S. De Miranda, G. Castellazzi, V. Sarhosis, J. Hudson, D. Theodossopoulos. 2020. Historic barrel vaults undergoing differential settlements. International Journal of Architectural Heritage 14 (8):1196–209. doi:https://doi.org/10.1080/15583058.2019.1596332.
  • D’Ayala, D. F., and E. Tomasoni. 2011. Three-dimensional analysis of masonry vaults using limit state analysis with finite friction. International Journal of Architectural Heritage 5:140–71. doi:https://doi.org/10.1080/15583050903367595.
  • Di Pasquale, S. 2001. L’arte del costruire tra conoscenza e scienza. Venezia: Marsilio Editore.
  • Docci, M. 2011. Le volte autoportanti apparecchiate a spina pesce. In Le cupole Murarie: Storia, Analisi, Intervento, 383–91. Roma: Edizioni PRE progetti.
  • Donghi, D. 1906. Manuale dell’Architetto. Compilato sulla traccia del Bakunde des Architekten. Torino: Utet.
  • Ferretti, D., E. Coïsson, and M. Rozzi. 2017. A new numerical approach to the structural analysis of masonry vaults. Key Engineering Materials 747:52–59. doi:https://doi.org/10.4028/w ww.scientific.net/KEM.747.52.
  • Foraboschi, P. 2016. The central role played by structural design in enabling the construction of buildings that advanced and revolutionized architecture. Construction and Building Materials 114:956–76.
  • Forgács, T., V. Sarhosis, and K. Bagi. 2018. Influence of construction method on the load bearing capacity of skew masonry arches. Engineering Structures 168:612–27.
  • Formenti, C. 1893. La pratica del fabbricare per l’ingegnere. Milano: Ulrico Hoepli.
  • Foti, D., V. Vacca, and I. Facchini. 2018. DEM modeling and experimental analysis of the static behavior of a dry-joints masonry cross vaults. Construction and Building Materials 170:111–20. doi:https://doi.org/10.1016/j.conbuildmat.2018.02.202.
  • Gaetani, A., G. Monti, P. B. Lourenço, and G. Marcari. 2016. Design and analysis of cross vaults along history. International Journal of Architectural Heritage 10:841–56. doi:https://doi.org/10.1080/15583058.2015.1132020.
  • Gelati, C. 1907. Nozioni pratiche ed artistiche di architettura. 2nd ed. (1st edition, 1899). Torino: Carlo Pasta.
  • Gilbert, E. G., D. W. Johnson, and S. S. Keerthi. 1988. A fast procedure for computing the distance between complex objects in three-dimensional space. IEEE Journal on Robotics and Automation 4:193–203. doi:https://doi.org/10.1109/56.2083.
  • Giorgi, L., and P. Matracchi. 2008. New studies on Brunelleschi’s dome in Florence, 191–98. Bath, UK: Taylor & Francis Group.
  • Guerra, C. 1945. Architettura tecnica - le strutture degli edifici (parte prima). 3rd ed. Napoli: Casa Editrice Raffaele Pironti.
  • Heyman, J. 1995. The stone skeleton: Structural engineering of masonry architecture. Cambridge: Cambridge University Press.
  • Heyn, T., M. Anitescu, A. Tasora, and D. Negrut. 2013. Using Krylov subspace and spectral methods for solving complementarity problems in many‐body contact dynamics simulation. International Journal for Numerical Methods in Engineering 95 (7):541–61. doi:https://doi.org/10.1002/nme.4513.
  • Huerta Fernández, S. 2001. Mechanics of masonry vaults: The equilibrium approach. In Historical constructions. Possibilities of numerical and experimental techniques, ed. P. B. Lourenco, and P. Roca, 47–69. Guimaraes: Universidade do Minho.
  • Huerta Fernández, S. 2008. The analysis of masonry architecture: A historical approach. Architectural Science Review 51:297–328. doi:https://doi.org/10.3763/asre.2008.5136.
  • Jean, M. 1999. The non-smooth contact dynamics method. Computer Methods in Applied Mechanics and Engineering 177:235–57. doi:https://doi.org/10.1016/S0045-7825(98)00383-1.
  • Lancioni, G., S. Lenci, Q. Piattoni, and E. Quagliarini. 2013. Dynamics and failure mechanisms of ancient masonry churches subjected to seismic actions by using the NSCD method: The case of the medieval church of S. Maria in Portuno. Engineering Structures 56:1527–46. doi:https://doi.org/10.1016/j.engstruct.2013.07.027.
  • Lemos, J. V. 2007. Discrete element modeling of masonry structures. International Journal of Architectural Heritage 1:190–213. doi:https://doi.org/10.1080/15583050601176868.
  • Lengyel, G. 2017. Discrete element analysis of gothic masonry vaults for self-weight and horizontal support displacement. Engineering Structures 148:195–209. doi:https://doi.org/10.1016/j.engstruct.2017.06.014.
  • Levi, C. 1932. Trattato teorico pratico di costruzioni civili, rurali, stradali ed idrauliche. Milano: Hoepli.
  • Lourénço, B. P., R. De Borst, and J. G. Rots. 1997. A plane stress softening plasticity model for orthotropic materials. International Journal for Numerical Methods in Engineering 40 (21):4033–57. doi:https://doi.org/10.1002/(SICI)1097-0207(19971115)40:21<4033::AID-NME248>3.0.CO;2-0.
  • Mainstone, R. J. 1969. Brunelleschi’s Dome of S. Maria del Fiore and some related structures. Transactions of the Newcomen Society 42 (1):107–26. doi:https://doi.org/10.1179/tns.1969.006.
  • Mangoni, D., A. Tasora, and R. Garziera. 2018. A primal-dual predictor-corrector interior point method for non-smooth contact dynamics. Computer Methods in Applied Mechanics and Engineering 330:351–67. doi:https://doi.org/10.1016/j.cma.2017.10.030.
  • Marmo, F., and L. Rosati. 2017. Reformulation and extension of the thrust network analysis. Computers & Structures 182 (1):65–94. doi:https://doi.org/10.1016/j.compstruc.2016.11.016.
  • McInerney, J., and M. J. DeJong. 2014. Discrete element modeling of groin vault displacement capacity. International Journal of Architectural Heritage 9:1037–49. doi:https://doi.org/10.1080/15583058.2014.923953.
  • Milani, E., G. Milani, and A. M. Tralli. 2008. Limit analysis of masonry vaults by means of curved shell finite elements and homogeneization. International Journal of Solids and Structures 45:5258–88. doi:https://doi.org/10.1016/j.ijsolstr.2008.05.019.
  • Milani, G., and A. Cecchi. 2013. Compatible model for herringbone bond masonry: Linear elastic homogenization, failure surfaces and structural implementation. International Journal of Solids and Structures 50:3274–96. doi:https://doi.org/10.1016/j.ijsolstr.2013.05.032.
  • Milani, G., P. B. Lourenço, and A. M. Tralli. 2006. Homogenised limit analysis of masonry walls, Part I: Failure surfaces. Computers & Structures 95 (7):541–61. doi:https://doi.org/10.1016/j.compstruc.2005.09.005.
  • Ministero delle Infrastrutture e dei Trasporti. 2018. Italian code for structural design, Norme Tecniche per le Costruzioni, D.M. 17/1/2018, (GU Serie Generale n.42 del 20-02-2018- Suppl. Ordinario n. 8) (In Italian).
  • Moreau, J. J. 1988. Unilateral contact and dry friction in finite dimension freedom dynamics. Vol. 302, 1–82. CISM Courses and Lectures, Berlin: Springer.
  • Negrut, D., A. Tasora, H. Mazhar, T. Heyn, P. Hahn. 2012. Leveraging parallel computing in multibody dynamics. Multibody System Dynamics 27 (1):95–117. doi:https://doi.org/10.1007/s11044-011-9262-y.
  • Pizzigoni, A., V. Paris, M. Pasta, M. Morandi, A. Parsani. 2018. Herringbone naked structure. In: Proceedings of the IASS Symposium 2018, Creativity in Structural Design, MIT, Boston, USA: 1-6.
  • ProjectChrono. 2018. ProjectChrono. An open source multi-physics simulation engine. [Online]. https://projectchrono.org.
  • Rafiee, A., and M. Vinches. 2013. Mechanical behaviour of a stone masonry bridge assessed using an implicit discrete element method. Engineering Structures 48:739–49. doi:https://doi.org/10.1016/j.engstruct.2012.11.035.
  • Rafiee, A., and M. Vinches. 2016. Implicit discrete element analysis of a masonry cupola under seismic loads. International Journal of Civil Engineering 14:357–67. doi:https://doi.org/10.1007/s40999-016-0035-0.
  • Rondelet, J. B. 1802. Traité théorique et pratique de l’art de bâtir. Paris: F. Didot.
  • Scamozzi, V. 1615. L’idea della architettura universale. Venezia, Italy: expensis auctoris.
  • Sicurella, C. 2017. The role of masonry pattern in vaults from parametric algoritmic design to statican alysis by discrete element method. Italy: MSc Thesis, University of Parma. Supervisors: Prof. Ferretti, D. & Dr. Lenticchia, E.
  • Taddei, A., and D. Taddei. 2012. The “spina-pesce” and the “corda- blanda”: Florentine tradition in the (self-supporting) domes rotating. Firenze: Nardini Editore.
  • Tasora, A. 2017. Time integration in Chrono: Engine. [Online] http://www.projectchrono.org/assets/white_papers/ChronoCore/integrator.pdf.
  • Tralli, A., C. Alessandri, and G. Milani. 2014. Computational methods for masonry vaults: A review of recent results. The Open Civil Engineering Journal 8:272–87. doi:https://doi.org/10.2174/1874149501408010272.
  • Wendland, D. 2007. Traditional vault construction without formwork: Masonry pattern and vault shape in the historical technical literature and in experimental studies. International Journal of Architectural Heritage 1 (4):311–65. doi:https://doi.org/10.1080/15583050701373803.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.