Publication Cover
International Journal of Architectural Heritage
Conservation, Analysis, and Restoration
Volume 17, 2023 - Issue 2
370
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Automatic Detection of Surface Damage in Round Brick Chimneys by Finite Plane Modelling from Terrestrial Laser Scanning Point Clouds. Case Study of Bragança Dukes’ Palace, Guimarães, Portugal

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 389-403 | Received 15 Dec 2020, Accepted 30 Apr 2021, Published online: 23 May 2021

References

  • Alsadik, B., and L. Khalid Jasim. 2019. Active use of panoramic mobile mapping systems for as built surveying and heritage documentation. International Journal of Architectural Heritage 13:244–56. doi:10.1080/15583058.2018.1431733.
  • Antón, D., B. Medjdoub, R. Shrahily, and J. Moyano. 2018. Accuracy evaluation of the semi-automatic 3D modeling for historical building information models. International Journal of Architectural Heritage 12:790–805. doi:10.1080/15583058.2017.1415391.
  • Aoki, T., T. Komiyama, D. Sabi, and D. Rivella. 2004. Theoretical and experimental dynamic analysis of Rakanji stone arch bridge. In 7th International Conference on Motion, Honyabakei, Oita, Japan.
  • Aoki, T., D. Sabia, and D. Rivella. 2008. Influence of experimental data and FE model on updating results of a brick chimney. Advances in Engineering Software 39:327–35. doi:10.1016/j.advengsoft.2007.01.005.
  • Aoki, T., D. Sabia, D. Rivella, and H. Muto. 2005. Dynamic identification and model updating of the Howa Brick Chimney, Tokoname, Japan. WIT Transactions on the Built Environment 83. doi:10.2495/STR050261.
  • Baik, A. 2017. From point cloud to Jeddah Heritage BIM Nasif Historical House – Case study. Digital Applications in Archaeology and Cultural Heritage 4:1–18. doi:10.1016/j.daach.2017.02.001.
  • Balado, J., L. Díaz-Vilariño, P. Arias, and H. González-Jorge. 2018. Automatic classification of urban ground elements from mobile laser scanning data. Automation in Construction 86:226–39. doi:10.1016/j.autcon.2017.09.004.
  • Barazzetti, L. 2016. Parametric as-built model generation of complex shapes from point clouds. Advanced Engineering Informatics 30:298–311. doi:10.1016/j.aei.2016.03.005.
  • Barazzetti, L., M. Previtali, and F. Roncoroni. 2019. The use of Terrestrial Laser Scanning techniques to evaluate industrial masonry chimney verticallity. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLII-2/W11, 173–78. doi:10.5194/isprs-archives-XLII-2-W11-173-2019 8–10 May 2019, Milan, Italy.
  • Bienvenido-Huertas, D., J. E. Nieto-Julián, J. J. Moyano, J. M. Macías-Bernal, and J. Castro. 2019. Implementing artificial intelligence in H-BIM using the J48 algorithm to manage historic buildings. International Journal of Architectural Heritage 1–13. doi:10.1080/15583058.2019.1589602.
  • Bitenc, M., D. S. Kieffer, and K. Khoshelham. 2019. Potential and limitations of Terrestrial Laser Scanning for discontinuity roughness estimation. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLII-2/W13, 935–41, 10–14 June 2019, Enschede, The Netherlands. doi:10.5194/isprs-archives-XLII-2-W13-935-2019.
  • Boehler, W., and A. Marbs. 2002. 3D scanning and photogrammetry for heritage recording: A comparison. Geoinformatica. Proc. 12th Int. Conf. on Geoinformatics, Gävle, Sweden, 2004, pp. 291-298.
  • Bolognesi, M., A. Furini, V. Russo, A. Pellegrinelli, and P. Russo. 2015. Testing the low-cost rpas potential in 3D cultural heritage reconstruction. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XL-5/W4, 229–35, 25-27 February 2015, Avila, Spain. doi:10.5194/isprsarchives-XL-5-W4-229-2015.
  • Bordziłowski, J., and K. Darowicki. 1998. Anti-corrosion protection of chimneys and flue gas ducts. Anti-Corrosion Methods and Materials 45:388–96. doi:10.1108/00035599810236243.
  • Brumana, R., D. Oreni, B. Cuca, L. Binda, P. Condoleo, and M. Triggiani. 2014. Strategy for integrated surveying techniques finalized to interpretive models in a Byzantine Church, Mesopotam, Albania. International Journal of Architectural Heritage 8:886–924. doi:10.1080/15583058.2012.756077.
  • Bueno, M., L. Díaz-Vilariño, H. González-Jorge, J. Martínez-Sánchez, and P. Arias. 2017. Quantitative evaluation of CHT and GHT for column detection under different conditions of data quality. Journal of Computing in Civil Engineering 31:4017032. doi:10.1061/(ASCE)CP.1943-5487.0000678.
  • De Reu, J., G. Plets, G. Verhoeven, P. De Smedt, M. Bats, B. Cherretté, W. De Maeyer, J. Deconynck, D. Herremans, P. Laloo, et al. 2013. Towards a three-dimensional cost-effective registration of the archaeological heritage. Journal of Archaeological Science 40:1108–21. doi:10.1016/j.jas.2012.08.040.
  • Diaz-vilariño, L., P. Boguslawski, M. Azenha, L. Mahdjoubi, P. B. Lourenço, and P. Arias. 2017. From LiDAR data towards HBIM for energy analysis. In Heritage building information modelling, 224. Taylor & Francis.
  • Díaz-Vilariño, L., E. Frías, M. Previtali, M. Scaioni, and J. Balado. 2019. Scan planning optimization for outdoor archaeological sites. In ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 8–10 May 2019, Milan, Italy. doi:10.5194/isprs-Archives-XLII-2-W11-489-2019.
  • Dore, C., and M. Murphy. 2012. Integration of Historic Building Information Modeling (HBIM) and 3D GIS for recording and managing cultural heritage sites. In 2012 18th International Conference on Virtual Systems and Multimedia, 369–76. Milan, Italy. doi:10.1109/VSMM.2012.6365947.
  • Du, Y., W. Chen, K. Cui, and K. Zhang. 2019. Study on damage assessment of earthen sites of the Ming Great Wall in Qinghai Province Based on Fuzzy-AHP and AHP-TOPSIS. International Journal of Architectural Heritage 1–14. doi:10.1080/15583058.2019.1576241.
  • Erenoglu, R. C., O. Akcay, and O. Erenoglu. 2017. An UAS-assisted multi-sensor approach for 3D modeling and reconstruction of cultural heritage site. Journal of Cultural Heritage 26:79–90. doi:10.1016/j.culher.2017.02.007.
  • Fraile Rodríguez, P. 2017. Catalogación y análisis de chimeneas industriales de fábrica de ladrillo en las comarcas de Santander y Besaya : Estudio del comportamiento estructural de un caso concreto.
  • Godinho, M., R. Machete, M. Ponte, A. P. Falcão, A. B. Gonçalves, and R. Bento. 2020. BIM as a resource in heritage management: An application for the National Palace of Sintra, Portugal. Journal of Cultural Heritage 43:153–62. doi:10.1016/j.culher.2019.11.010.
  • Grussenmeyer, P., T. Landes, T. Voegtle, and K. Ringle. 2008. Comparison methods of terrestrial laser scanning, photogrammetry and tacheometry data for recording of cultural heritage buildings. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences 37. Beijing, China.
  • Harshit Jain, K., and V. Mishra. 2020. Analysis of survey approach using UAV images and lidar for a chimney study. Journal of the Indian Society of Remote Sensing. doi:10.1007/s12524-020-01243-z.
  • Hess, M., V. Petrovic, D. Meyer, D. Rissolo, and F. Kuester. 2015. Fusion of multimodal three-dimensional data for comprehensive digital documentation of cultural heritage sites. In 2015 Digital Heritage, 595–602. Granada, Spain. doi:10.1109/DigitalHeritage.2015.7419578.
  • Huang, H., C. Brenner, and M. Sester. 2011. 3D building roof reconstruction from point clouds via generative models. In Proceedings of the 19th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, GIS ’11, 16–24, ACM, New York, NY, USA, Chicago IL USA. doi:10.1145/2093973.2093977.
  • Kalamees, T., A. Väli, L. Kurik, M. Napp, E. Arümagi, and U. Kallavus. 2016. The influence of indoor climate control on risk for damages in naturally ventilated historic churches in cold climate. International Journal of Architectural Heritage 10:486–98. doi:10.1080/15583058.2014.1003623.
  • Kaszowska, O., P. Gruchlik, and W. Mika. 2018. Industrial chimney monitoring - Contemporary methods. In E3S Web of Conferences, EDP Sciences. Chicago IL USA. doi:10.1051/e3sconf/20183601005.
  • Khodeir, L. M., D. Aly, and S. Tarek. 2016. Integrating HBIM (Heritage Building Information Modeling) tools in the application of sustainable retrofitting of heritage buildings in Egypt. Procedia Environmental Sciences 34:258–70. doi:10.1016/j.proenv.2016.04.024.
  • Lafarge, F., and C. Mallet. 2012. Creating large-scale city models from 3D-point clouds: A robust approach with hybrid representation. International Journal of Computer Vision 99:69–85. doi:10.1007/s11263-012-0517-8.
  • Lemos, J. V. 2007. Discrete element modeling of masonry structures. International Journal of Architectural Heritage 1:190–213. doi:10.1080/15583050601176868.
  • Logothetis, S., A. Delinasiou, and E. Stylianidis. 2015. Building information modelling for cultural heritage: A review. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences II-5/W3, 177–83. Taipei, Taiwan. doi:10.5194/isprsannals-II-5-W3-177-2015.
  • Lopes, V., J. Guedes, E. Paupério, A. Arêde, and A. Costa. 2008. Numerical analysis of a masonry chimney supported by in situ assessment tools.
  • Lopez, F., P. Lerones, J. Llamas, J. Gómez-García-Bermejo, and E. Zalama. 2018. A review of Heritage Building Information Modeling (H-BIM). Multimodal Technologies and Interaction 2:21. doi:10.3390/mti2020021.
  • López-Patiño, G., J. M. Adam, P. Verdejo Gimeno, and G. Milani. 2017. Causes of damage to industrial brick masonry chimneys. Engineering Failure Analysis 74:188–201. doi:10.1016/j.engfailanal.2017.01.014.
  • Meyer, D., E. Fraijo, E. Lo, D. Rissolo, and F. Kuester. 2015. Optimizing UAV systems for rapid survey and reconstruction of large scale cultural heritage sites. In 2015 Digital Heritage, 151–54. Granada, Spain doi:10.1109/DigitalHeritage.2015.7413857.
  • Mulder, R. L., and P. Marais. 2016. Accelerating point cloud cleaning. In Eurographics workshop on graphics and cultural heritage, ed. C. E. Catalano, and L. De Luca. The Eurographics Association, 211–214 Genova, Italy. doi:10.2312/gch.20161410.
  • Murtiyoso, A., and P. Grussenmeyer. 2017. Documentation of heritage buildings using close-range UAV images: Dense matching issues, comparison and case studies. The Photogrammetric Record 32:206–29. doi:10.1111/phor.12197.
  • Nieto-Julián, J. E., D. Antón, and J. J. Moyano. 2019. Implementation and management of structural deformations into historic building information models. International Journal of Architectural Heritage 1–14. doi:10.1080/15583058.2019.1610523.
  • Núñez Andrés, A., F. Buill Pozuelo, J. Regot Marimón, and A. De Mesa Gisbert. 2012. Generation of virtual models of cultural heritage. Journal of Cultural Heritage 13:103–06. doi:10.1016/j.culher.2011.06.004.
  • Pallarés, F. J., A. Agüero, and M. Martín. 2006. Seismic behaviour of industrial masonry chimneys. International Journal of Solids and Structures 43:2076–90. doi:10.1016/j.ijsolstr.2005.06.014.
  • Papastamos, G., S. Stiros, V. Saltogianni, and V. Kontogianni. 2015. 3-D strong tilting observed in tall, isolated brick chimneys during the excavation of the Athens Metro. Applied Geomatics 7:115–21. doi:10.1007/s12518-014-0138-8.
  • Pierdicca, R., E. Frontoni, E. S. Malinverni, F. Colosi, and R. Orazi. 2016. Virtual reconstruction of archaeological heritage using a combination of photogrammetric techniques: Huaca Arco Iris, Chan Chan, Peru. Digital Applications in Archaeology and Cultural Heritage 3:80–90. doi:10.1016/j.daach.2016.06.002.
  • Ramos, M., and F. Remondino. 2015. Data fusion in cultural heritage – A review. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XL-5/W7, 359–63. Taipei, Taiwan. doi:10.5194/isprsarchives-XL-5-W7-359-2015.
  • Remondino, F. 2011. Heritage recording and 3D modeling with photogrammetry and 3D scanning. Remote Sensing 3:1104–38. doi:10.3390/rs3061104.
  • Rodríguez-Gonzálvez, P., B. Jiménez Fernández-Palacios, L. Á. Muñoz-Nieto, P. Arias-Sanchez, and D. Gonzalez-Aguilera. 2017. Mobile LiDAR system: New possibilities for the documentation and dissemination of large cultural heritage sites. Remote Sensing 9:189. doi:10.3390/rs9030189.
  • Rodríguez-Moreno, C., J. F. Reinoso-Gordo, E. Rivas-López, A. Gómez-Blanco, F. J. Ariza-López, and I. Ariza-López. 2018. From point cloud to BIM: An integrated workflow for documentation, research and modelling of architectural heritage. Survey Review 50:212–31. doi:10.1080/00396265.2016.1259719.
  • Ruggles, S., J. Clark, K. W. Franke, D. Wolfe, B. Reimschiissel, R. A. Martin, T. J. Okeson, and J. D. Hedengren. 2016. Comparison of SfM computer vision point clouds of a landslide derived from multiple small UAV platforms and sensors to a TLS-based model. Journal of Unmanned Vehicle Systems 4:246–65. doi:10.1139/juvs-2015-0043.
  • Sampath, A., and J. Shan. 2010. Segmentation and reconstruction of polyhedral building roofs from aerial lidar point clouds. IEEE Transactions on Geoscience and Remote Sensing 48 (3):1554–67. doi:10.1109/TGRS.2009.2030180.
  • Sztwiertnia, D., A. Ochałek, A. Tama, and P. Lewińska. 2019. HBIM (heritage Building Information Model) of the Wang Stave Church in Karpacz – Case Study. International Journal of Architectural Heritage 1–15. doi:10.1080/15583058.2019.1645238.
  • Tommasi, C., C. Achille, and F. Fassi. 2016. From point cloud to BIM: A modelling challenge in the cultural heritage field. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLI-B5, 429–36, Prague, Czech Republic. doi:10.5194/isprs-archives-XLI-B5-429-2016.
  • Torr, P. H. S., and A. Zisserman. 2000. MLESAC: A new robust estimator with application to estimating image geometry. Computer Vision and Image Understanding 78:138–56. doi:10.1006/cviu.1999.0832.
  • Valero, E., F. Bosché, and A. Forster. 2018. Automatic segmentation of 3D point clouds of rubble masonry walls, and its application to building surveying, repair and maintenance. Automation in Construction 96:29–39. doi:10.1016/j.autcon.2018.08.018.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.