Publication Cover
International Journal of Architectural Heritage
Conservation, Analysis, and Restoration
Volume 17, 2023 - Issue 5
273
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Seismic Vulnerability Assessment of a Stone Arch Using Discrete Elements

, , &
Pages 730-744 | Received 27 Apr 2021, Accepted 29 Jul 2021, Published online: 26 Aug 2021

References

  • Asteris, P. G., A. Moropoulou, A. D. Skentou, M. Apostolopoulou, A. Mohebkhah, L. Cavaleri, H. Rodrigues, and H. Varum. 2019. Stochastic vulnerability assessment of masonry structures: Concepts, modeling and restoration aspects. Applied Sciences 9 (2):243. doi:10.3390/app9020243.
  • Asteris, P. G., M. G. Douvika, M. Apostolopoulou, and A. Moropoulou. 2017. Seismic and restoration assessment of monumental masonry structures. Materials 10 (8):895. doi:10.3390/ma10080895.
  • Asteris, P. G., M. P. Chronopoulos, C. Z. Chrysostomou, H. Varum, V. Plevris, N. Kyriakides, and V. Silva. 2014. Seismic vulnerability assessment of historical masonry structural systems. Engineering Structures 62-63:118–34. doi:10.1016/j.engstruct.2014.01.031.
  • Azevedo, J., G. Sincraian, and J. V. Lemos. 2000. Seismic behavior of blocky masonry structures. Earthquake Spectra 16 (2):337–65. doi:10.1193/1.1586116.
  • Battaglia, L., T. M. Ferreira, and P. B. Lourenço. 2021. Seismic fragility assessment of masonry building aggregates: A case study in the old city centre of Seixal, Portugal. Earthquake Engineering & Structural Dynamics 50 (5):1358–77. doi:10.1002/eqe.3405.
  • Belytschko, T. 1983. An overview of semidiscretization and time integration procedures. In Computational methods for transient analysis. vol. 1 in computational methods in mechanics, ed. T. J. R. Belytschko, and T. Hughes, 1–67. Amsterdam: North-Holland Publ. Co.
  • Calderini, C., S. Lagomarsino, M. Rossi, G. De Canio, M. L. Mongelli, and I. Roselli. 2015. Shaking table tests of an arch-pillars system and design of strengthening by the use of tie-rods. Bulletin of Earthquake Engineering 13 (1):279–97. doi:10.1007/s10518-014-9678-x.
  • Cannizzaro, F., B. Pantò, S. Caddemi, and I. Caliò. 2018. A discrete macro-element method (DMEM) for the nonlinear structural assessment of masonry arches. Engineering Structures 168:243–56. doi:10.1016/j.engstruct.2018.04.006.
  • Chaves, E. A., M. Filippoupolitis, N. Mendes, and P. B. Lourenço. 2020. Safety assessment of the South Oculus of Canterbury Cathedral. Structures 28:1427–34. doi:10.1016/j.istruc.2020.09.068.
  • D’Ayala, D. 2013. 13 - Assessing the seismic vulnerability of masonry buildings. In Handbook of seismic risk analysis and management of civil infrastructure systems, ed. S. Tesfamariam, and K. Goda, 334–65. Woodhead Publishing.
  • Dimitri, R., and F. Tornabene. 2015. A parametric investigation of the seismic capacity for masonry arches and portals of different shapes. Engineering Failure Analysis 52:1–34. doi:10.1016/j.engfailanal.2015.02.021.
  • EN 10138-3:2005: Prestressing steels - Part 3: Strand (Standard). 2005. CEN – European Committee for Standardization.
  • European Strong-Motion Database. 2017. European commission, research-directorate general, environment and climate programme. Accessed December 2017. http://www.isesd.hi.is.
  • Gobbin, F., G. De Felice, and J. V. Lemos. 2020. A discrete element model for masonry vaults strengthened with externally bonded reinforcement. International Journal of Architectural Heritage 1–14. doi:10.1080/15583058.2020.1743792.
  • Heyman, J. 1995. The stone skeleton: Structural engineering of masonry architecture. Cambridge: Cambridge University Press.
  • Huerta, S. 2006. Galileo was wrong: The geometrical design of masonry arches. Nexus Network Journal 8 (2):25–52. doi:10.1007/s00004-006-0016-8.
  • Idris, J., M. Al-Heib, and T. Verdel. 2009. Numerical modelling of masonry joints degradation in built tunnels. Tunnelling and Underground Space Technology 24 (6):617–26. doi:10.1016/j.tust.2009.05.002.
  • Itasca Consulting Group, Inc. 2016. 3DEC - Three-dimensional distinct element code. Minneapolis: Itasca. (Ver. 5.2).
  • Jay, C. B. 1999. Programming in FISh. International Journal on Software Tools for Technology Transfer 2 (3):307–15. doi:10.1007/s100090050037.
  • Jurina, L. 2003. The reinforced arch method: A new technique in static consolidation of arches and vaults. Proceedings of the European Conference on Innovative Technologies and Materials for the Protection of Cultural Heritage, 1–10. Athens, Greece, December 16-17.
  • Jurina, L., and E. O. Radaelli. 2020. “Reinforced arch method” as retrofitting technique for masonry arches. Experimental tests and numerical modelling. Proceedings of ARCH 2019, Porto, Portugal: Springer International Publishing.
  • Lemos, J. V. 1998. Discrete element modelling of the seismic behaviour of stone masonry arches. In Computer methods in structural masonry – 4 (Eds. G.N. Pande, J. Middleton &B.Kralj), E&FN Spon, London, pp. 220-227, 1998. (Proc. 4rd Int. Symp. Num. MethodsStructural Masonry - STRUMAS IV, Florence, September 1997).
  • Lemos, J. V. 2007. Discrete element modeling of masonry structures. International Journal of Architectural Heritage 1 (2):190–213. doi:10.1080/15583050601176868.
  • Lemos, J. V. 2017. Contact representation in rigid block models of masonry. International Journal of Masonry Research and Innovation 2 (4):321–34. doi:10.1504/IJMRI.2017.087445.
  • Maio, R., and G. Tsionis. 2016. Seismic fragility curves for the European building stock: Review and evaluation of analytical fragility curves. EUR 27635 EN. doi:10.2788/586263
  • Mukherjee, S., and V. K. Gupta. 2002. Wavelet-based generation of spectrum-compatible time-histories. Soil Dynamics and Earthquake Engineering 22 (9):799–804. doi:10.1016/S0267-7261(02)00101-X.
  • Neuwald-Burg, C., and M. Pfeifer. 2012. Problems in the assessment of the stress-strain relationship of masonry. In Historic mortars, ed. J. Válek, J. J. Hughes, and C. J. W. P. Groot, 343–57. Dordrecht: Springer Netherlands.
  • NP EN 1990:2009: Eurocode – Basis of structural design (Standard). 2009. CT 115 – Eurocódigos Estruturais (LNEC).
  • NP EN 1998-1:2010: Eurocode 8 – Design of structures for earthquake resistance - Part 1: General rules, seismic actions and rules for buildings (Standard). 2010. CT 115 – Eurocódigos Estruturais (LNEC).
  • Oliveira, C. S., J. V. Lemos, and G. E. Sincraian. 2002. Modelling large displacements of structures damaged by earthquake motions. European Earthquake Engineering 3:56–71.
  • Papantonopoulos, C., I. N. Psycharis, D. Y. Papastamatiou, J. V. Lemos, and H. P. Mouzakis. 2002. Numerical prediction of the earthquake response of classical columns using the distinct element method. Earthquake Engineering & Structural Dynamics 31 (9):1699–717. doi:10.1002/eqe.185.
  • PEER Ground Motion Database. 2017. Pacific Earthquake Engineering Research Center (PEER). Accessed December 2017. ttps://peer.berkeley.edu/peer-strong-ground-motion-database.
  • Psycharis, I. N., J. V. Lemos, D. Y. Papastamatiou, C. Zambas, and C. Papantonopoulos. 2003. Numerical study of the seismic behaviour of a part of the Parthenon Pronaos. Earthquake Engineering & Structural Dynamics 32 (13):2063–84. doi:10.1002/eqe.315.
  • Psycharis, I. N., M. Fragiadakis, and I. Stefanou. 2013. Seismic reliability assessment of classical columns subjected to near-fault ground motions. Earthquake Engineering & Structural Dynamics 42 (14):2061–79.
  • Rizzi, E., F. Rusconi, and G. Cocchetti. 2014. Analytical and numerical DDA analysis on the collapse mode of circular masonry arches. Engineering Structures 60:241–57. doi:10.1016/j.engstruct.2013.12.023.
  • Sarhosis, V., D. Dais, E. Smyrou, İ. E. Bal, and A. Drougkas. 2021. Quantification of damage evolution in masonry walls subjected to induced seismicity. Engineering Structures 243:112529. doi:10.1016/j.engstruct.2021.112529.
  • Sarhosis, V., and Y. Sheng. 2014. Identification of material parameters for low bond strength masonry. Engineering Structures 60:100–10. doi:10.1016/j.engstruct.2013.12.013.
  • Thavalingam, A., N. Bicanic, J. Robinson, and D. Ponniah. 2001. Computational framework for discontinuous modelling of masonry arch bridges. Computers & Structures 79 (19):1821–30. doi:10.1016/S0045-7949(01)00102-X.
  • Tóth, A. R., Z. Orbán, and K. Bagi. 2009. Discrete element analysis of a stone masonry arch. Mechanics Research Communications 36 (4):469–80. doi:10.1016/j.mechrescom.2009.01.001.
  • Ural, A., F. K. Fırat, Ş. Tuğrulelçi, and M. E. Kara. 2016. Experimental and numerical study on effectiveness of various tie-rod systems in brick arches. Engineering Structures 110:209–21. doi:10.1016/j.engstruct.2015.11.038.
  • Vamvatsikos, D. 2021. Incremental dynamic analysis. In Encyclopedia of earthquake engineering, ed. M. Beer, I. A. Kougioumtzoglou, E. Patelli, and I. S.-K. Au, 1–8. Berlin: Springer Berlin Heidelberg.
  • Vamvatsikos, D., and C. A. Cornell. 2002. Incremental dynamic analysis. Earthquake Engineering & Structural Dynamics 31 (3):491–514. doi:10.1002/eqe.141.
  • Vrouwenvelder, T. 1997. The JCSS probabilistic model code. Structural Safety 19 (3):245–51. doi:10.1016/S0167-4730(97)00008-8.
  • Zhang, Y., L. Macorini, and B. A. Izzuddin. 2016. Mesoscale partitioned analysis of brick- masonry arches. Engineering Structures 124:142–66. doi:10.1016/j.engstruct.2016.05.046.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.