Publication Cover
International Journal of Architectural Heritage
Conservation, Analysis, and Restoration
Volume 17, 2023 - Issue 7
165
Views
3
CrossRef citations to date
0
Altmetric
Research Article

A Preliminary Study on Properties of A Weak Units–Strong Mortar Masonry: The Case Study of Matera Tufo Masonry (Italy)

ORCID Icon, & ORCID Icon
Pages 1115-1136 | Received 02 Aug 2021, Accepted 04 Dec 2021, Published online: 04 Jan 2022

References

  • ASTM-C1314-03b. 2003. Standard Test Method for Compressive Strength of Masonry Prisms. s.l.: ASTM International.
  • Atkinson, R. H., B. P. Amadei, S. Saeb, and S. Sture. 1989. Response of masonry bed joints in direct shear. Journal of Structural Engineering 115 (9):2277–96. doi:10.1061/(ASCE)0733-9445(1989)115:9(2276).
  • Augenti, N., F. Parisi, and E. Acconcia, 2012. MADA: Online experimental database for mechanical modelling of existing masonry assemblages. In Proc. 15th World Conference on Earthquake Engineering, Lisbon (Portugal) (pp. 24–28).
  • Basha, S. H., and H. B. Kaushik. 2015. Non-linear Behavior of Weak Brick-Strong Mortar Masonry in Compression. In Advances in Structural Engineering, 2427–33. New Delhi: Springer.
  • Berto, L., A. Saetta, R. Scotta, and R. Vitaliani. 2005. Failure mechanism of masonry prism loaded in axial compression: Computational aspects. Materials and Structures 38 (2):249–56. doi:10.1007/BF02479350.
  • Binda, L., A. Fontana, and G. Frigerio, 1988. Mechanical behaviour of brick masonries derived from unit and mortar characteristics. In Proceedings of the 8th International Brick and Block Masonry Conference, Dublin, Ireland, 1, 205–16
  • Binda, L., A. Saisi, and C. Tiraboschi. 2000. Investigation procedures for the diagnosis of historic masonries. Construction and Building Materials 14 (4):199–233. doi:10.1016/S0950-0618(00)00018-0.
  • Binda, L., C. Tiraboschi, and S. Abbaneo. 1997. Experimental research to characterize masonry materials. Masonry International 10 (3):92–101.
  • Borri, A., M. Corradi, G. Castori, and A. De Maria. 2015. A method for the analysis and classification of historic masonry. Bulletin of Earthquake Engineering 13 (9):2647–65. doi:10.1007/s10518-015-9731-4.
  • Bosiljkov, V., A. Page, V. Bokan Bosiljkov, and R. Zarnic. 2003. Performance based studies of in-plane loaded unreinforced masonry walls. Masonry International 16 (2):39–50.
  • Camassa, D., A. Castellano, A. Fraddosio, and M. D. Piccioni. 2020. A New Ultrasonic Amplitude Tomography Approach, with Validation on Masonry Tuff Blocks. Journal of Nondestructive Evaluation 39 (3):1–19. doi:10.1007/s10921-020-00693-2.
  • Colla, C., F. Grüner, B. Dieruff, K. Fiedler, G. Pascale, E. Gabrielli, A. J. Fernandez, C. Gentilini, M. Lukomsky, M. Strojecki, et al. 2010. SMOOHS. Smart Monitoring of Historic Structures. D5.1-part1: Report on test methods and former test results. MPA Universität Stuttgart, Germany, Stuttgart, 402
  • Commentary to the NTC-2018 - Circolare 21/01/2019 n. 7. 2019. Istruzioni per l’applicazione dell’«Aggiornamento delle “Norme tecniche per le costruzioni”» di cui al decreto ministeriale 17 gennaio 2011”. Suppl. O. n. 5 alla Gazzetta Ufficiale del 11 febbraio 2019. C.S.LL.PP. In Italian
  • D’Amato, M., M. Laterza, and D. Diaz Fuentes. 2020. “Simplified Seismic Analyses of Ancient Churches in Matera’s Landscape,”. International Journal of Architectural Heritage 14 (1):119–38. doi:10.1080/15583058.2018.1511000.
  • D’Amato, M., R. Gigliotti, and R. Laguardia. 2019. Comparative seismic assessment of ancient masonry churches. Front. Built Environ 5 (56):2019. doi:10.3389/fbuil.2019.00056.
  • EC0. 2005. 2004. Eurocode 0 —Basis of structural design. London: British Standard Institution.
  • EC6. 2005. 2005. Eurocode 6—Design of masonry structures. London: British Standard Institution.
  • EN 1015–11. 1999. Methods of test for mortar for masonry–Part 11: Determination of flexural and compressive strength of hardened mortar. Brussels: European Committee for Standardization.
  • EN 14579–4. 2005. Testing methods for natural stone. Determination of sonic propagation velocity. Brussels: European Committee for Standardization.
  • EN 196–1. 2005 . Methods for testing cement-Part 1: Determination of compressive strength. Brussels: European Committee for Standardization.
  • EN 772–1. 2002. Methods of test for masonry units. Determination of compressive strength. Brussels: European Committee for Standardization.
  • Giuffrè, A., and C. Carocci, 1997. Codice di pratica per la sicurezza e la conservazione dei Sassi di Matera. Edizioni la Bautta. In Italian
  • Hendry, A. W. 1998. Structural masonry. Basingstoke, UK: Macmillan International Higher Education.
  • Jafari, S., R. Esposito, and J. G. Rots. 2019. From brick to element: Investigating the mechanical properties of calcium silicate masonry. In Structural Analysis of Historical Constructions, 596–604. Cham: Springer.
  • Jafari, S. 2021. Material characterisation of existing masonry: A strategy to determine strength, stiffness and toughness properties for structural analysis. Delft University of Technology: TU Delft Applied Mechanics. https://repository.tudelft.nl
  • Kaushik, H. B., D. C. Rai, and S. K. Jain. 2007. Stress-strain characteristics of clay brick masonry under uniaxial compression. Journal of Materials in Civil Engineering 19 (9):728–39. doi:10.1061/(ASCE)0899-1561(2007)19:9(728).
  • Krautkrämer, J., and H. Krautkrämer. 1990. . In Ultrasonic Testing of Materials . Heidelberg, Berlin: Springer-Verlag doi:10.1007/978-3-662-10680-8.
  • Kržan, M., S. Gostič, S. Cattari, and V. Bosiljkov. 2015. Acquiring reference parameters of masonry for the structural performance analysis of historical buildings. Bulletin of Earthquake Engineering 13 (1):203–36. doi:10.1007/s10518-014-9686-x.
  • Lehmann, B. 2007. Seismic traveltime tomography for engineering and exploration applications, Vols. 32–36. Netherlands: EAGE Publications bv, DB Houton.
  • Liberatore, D., N. Masini, L. Sorrentino, V. Racina, M. Sileo, O. AlShawa, and L. Frezza. 2016. Static penetration test for historical masonry mortar. Construction and Building Materials 122:810–22. doi:10.1016/j.conbuildmat.2016.07.097.
  • Lombillo, I., C. Thomas, L. Villegas, J. P. Fernández-Álvarez, and J. Norambuena-Contreras. 2013. Mechanical characterization of rubble stone masonry walls using non and minor destructive tests, 266–77. Construction and Building Materials.
  • Lourenço, P. B., G. Milani, A. Tralli, and A. Zucchini. 2007. Analysis of masonry structures: Review of and recent trends in homogenization techniquesThis article is one of a selection of papers published in this Special Issue on Masonry. Canadian Journal of Civil Engineering 34 (11):1443–57. doi:10.1139/L07-097.
  • Lourenço, P. B. 1996. Computational strategy for masonry structures. Delft, The Netherlands: Delft University Press. https://repository.tudelft.nl
  • Luchin, G. Y., 2017. Characterization of “Tufo” masonry of the Sassi of Matera by means of destructive and non-destructive tests. Master´s Thesis, Heritage & Design: Protection, Conservation and Recovery of Architectural Heritage, University of Basilicata, Matera, Italy.
  • Luchin, G., L. F. Ramos, and M. D’Amato. 2020. Sonic Tomography for Masonry Walls Characterization. International Journal of Architectural Heritage 14 (4):589–604. doi:10.1080/15583058.2018.1554723.
  • Lumantarna, R., D. T. Biggs, and J. M. Ingham. 2014. Uniaxial compressive strength and stiff- ness of field extracted and laboratory constructed masonry prisms. Journal of Materials in Civil Engineering 26 (4):567–75. doi:10.1061/(ASCE)MT.1943-5533.0000731.
  • Miranda, L., L. Cantini, J. Guedes, and A. Costa. 2016. Assessment of mechanical properties of full-scale masonry panels through sonic methods. Comparison with mechanical destructive tests. Structural Control & Health Monitoring 23 (3):503–16. doi:10.1002/stc.1783.
  • Mohr, H. A. 1940. Exploration of Soil Conditions and Sampling Operations (Soil Mechanics Series). Harvard University, Graduate School of Engineering 1940 (Bull):269.
  • NTC. 2018. Ministerial Decree 17/01/2018. Aggiornamento delle “Norme tecniche per le costruzioni”, di cui al Decreto Ministeriale 17 gennaio 2011. Suppl. O. n. 8 alla Gazzetta Ufficiale del 20 febbraio 2018. C.S.LL.PP. In Italian.
  • Pelà, L., P. Roca, and A. Benedetti. 2016. Mechanical characterization of historical masonry by core drilling and testing of cylindrical samples. International Journal of Architectural Heritage 10 (2–3):360–74.
  • Ravula, M. B., and K. V. Subramaniam. 2017. Experimental investigation of compressive failure in masonry brick assemblages made with soft brick. Materials and Structures 50 (1):1–11. doi:10.1617/s11527-016-0926-1.
  • Ravula, M. B., and K. V. Subramaniam. 2019. Cohesive-frictional interface fracture behavior in soft-brick masonry: Experimental investigation and theoretical development. Materials and Structures 52 (2):1–12. doi:10.1617/s11527-019-1333-1.
  • RILEM Recommendation TC127-MS. 1996. MS-D.1 Measurement of mechanical pulse velocity for masonry. Materials and Structures 29 (8):463–66. doi:10.1007/BF02486277.
  • Roca, P., M. Cervera, G. Gariup, and L. Pelà. 2010. Structural Analysis of Masonry Historical Constructions. Classical and Advanced Approaches. Archives of Computational Methods in Engineering 17 (3):299–325. doi:10.1007/s11831-010-9046-1.
  • Sarangapani, G., B. V. Venkatarama Reddy, and K. S. Jagadish. 2005. Brick-mortar bond and masonry compressive strength. Journal of Materials in Civil Engineering 17 (2):229–37. doi:10.1061/(ASCE)0899-1561(2005)17:2(229).
  • Singh, S. B., and M. Pankaj. 2017. Bond strength and compressive stress-strain characteristics of brick masonry. Journal of Building Engineering 9:10–16. doi:10.1016/j.jobe.2016.11.006.
  • Thamboo, J. A., and M. Dhanasekar. 2015. Characterisation of thin layer polymer cement mortared concrete masonry bond. Construction and Building Materials 82:71–80. doi:10.1016/j.conbuildmat.2014.12.098.
  • Thamboo, J. A., and M. Dhanasekar. 2016. Behaviour of thin layer mortared concrete masonry under combined shear and compression. Australian Journal of Structural Engineering 17 (1):39–52. doi:10.1080/13287982.2015.1116181.
  • Thamboo, J. A., and M. Dhanasekar. 2019. Correlation between the performance of solid masonry prisms and wallettes under compression. Journal of Building Engineering 22:429–38. doi:10.1016/j.jobe.2019.01.007.
  • Vasconcelos, G., and P. B. Lourenço. 2009. Experimental characterization of stone masonry in shear and compression. Construction and Building Materials 23 (11):3337–45. doi:10.1016/j.conbuildmat.2009.06.045.
  • Vemuri, J., S. Ehteshamuddin, and S. Kolluru. 2018. Numerical simulation of soft brick unreinforced masonry walls subjected to lateral loads. Cogent Engineering 5 (1):1551503. doi:10.1080/23311916.2018.1551503.
  • Vermeltfoort, A. T., 2008. Mechanical properties and application features of CASIELS. Proceedings of the 14th IBMAC. Sydney, Australia, 88–97
  • Vermeltfoort, A. T., and B. M. Ng’andu, 2005.The response of calcium silicate element wallettes to 2d compression loading. In Proceedings of the 10th Canadian Masonry Symposium. Banff, Alberta, Canada, 202–12.
  • Zavalis, R., B. Jonaitis, and P. B. Lourenço. 2018. Experimental investigation of the bed joint influence on mechanical properties of hollow calcium silicate block masonry. Materials and Structures 51 (4):1–12. doi:10.1617/s11527-018-1215-y.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.