Publication Cover
International Journal of Architectural Heritage
Conservation, Analysis, and Restoration
Volume 17, 2023 - Issue 8
384
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Long-Term Earthquake Response Monitoring of Nineteenth-Century Timber Temple Kencho-ji, Japan

ORCID Icon &
Pages 1240-1255 | Received 21 Apr 2021, Accepted 21 Jan 2022, Published online: 05 Feb 2022

References

  • Aguilar, R., G. Zonno, G. Lozano, R. Boroschek, and P. B. Lourenço. 2019. Vibration-based damage detection in historical adobe structures: Laboratory and field applications. International Journal of Architectural Heritage 13:1005–28. doi:10.1080/15583058.2019.1632974.
  • Baas, E. J., M. Riggio, and A. R. Barbosa. 2021. A methodological approach for structural health monitoring of mass-timber buildings under construction. Construction and Building Materials 268 (1):121153. doi:10.1016/j.conbuildmat.2020.121153.
  • Barsocchi, P., G. Bartoli, M. Betti, M. Girardi, S. Mammolito, D. Pellegrini, and G. Zini. 2021. Wireless sensor networks for continuous structural health monitoring of historic masonry towers. International Journal of Architectural Heritage 15:22–44. doi:10.1080/15583058.2020.1719229.
  • Ceravolo, R., G. de Lucia, E. Lenticchia, and G. Miraglia. 2019. Seismic structural health monitoring of cultural heritage structures: Springer tracts in civil engineering Switzerland: Springer Nature. doi:10.1007/978-3-030-13976-6_3.
  • Chase, J. G., K. L. Hwang, L. R. Barroso, and J. B. Mander. 2004. A simple LMS-based approach to the structural health monitoring benchmark problem. Earthquake Engineering and Structural Dynamics 34:6.
  • Chiba, K., and K. Fujita. 2010. Evaluation of structural performance of existing traditional timber structures in Japan by microtremor measurements. 11th World Conference on Timber Engineering 2010 WCTE, Torento, Italy, 898–906. June.
  • Cigada, A., L. Corradi Dell’Acqua, B. Mörlin Visconti Castiglione, M. Scaccabarozzi, M. Vanali, and E. Zappa. 2017. Structural health monitoring of an historical building: The main spire of the Duomo Di Milano. International Journal of Architectural Heritage 11:501–18. doi:10.1080/15583058.2016.1263691.
  • Clementi, F., A. Formisano, G. Milani, and F. Ubertini. 2021. Structural health monitoring of architectural heritage: From the past to the future advances. International Journal of Architectural Heritage 15:1–4. doi:10.1080/15583058.2021.1879499.
  • Diego, A., T. Burgos, R. C. Gomez Vargas, C. Pedraza, D. Agis, and F. Pozo. 2020. Damage identification in structural health monitoring: A brief review from its implementation to the use of data-driven applications. Sensors (Switzerland) 20 (3):733. doi:10.3390/s20030733.
  • Editing Committee of Modal Analysis Handbook. 2000. Modal analysis handbook. Tokyo, Japan: Corona publishing co., ltd.
  • Farrar, C. R., and J. L. Beck. 2014. Special issue of earthquake engineering and structural dynamics on earthquake engineering applications of structural health monitoring. Earthquake Engineering and Structural Dynamics 44:499–500. doi:10.1002/eqe.2537.
  • Farrar, C. R., and K. Worden. 2012. Structural health monitoring: A machine learning perspective. United Kingdom: John Wiley & Sons, Ltd.
  • Franke, B., S. Franke, and A. Muller. 2015. Case studies: Long-term monitoring of timber bridges. Journal of Civil Structural Health Monitoring 5:195–202. doi:10.1007/s13349-014-0093-4.
  • Fujita, K., E. Shin, A. Ibaraki, and M. Sanuki. 2013. Earthquake response monitoring and structural analysis of traditional Japanese timber temple. Advanced Materials Research 778:823–28. doi:10.4028/AMR.778.823.
  • Fujita, K., E. Shin, and J. Nishihama. 2016. Structural characteristics of traditional Japanese column and penetrating beam joint. Proceedings of the World Conference on Timber Engineering WCTE 2016, Eds. J. Eberhardsteiner, W. Winter, A. Fadai, and M. Poll, Vienna University of Technology, Austria. Vienna, Austria, (WCTE).
  • Fujita, K., E. Shin, and K. Chiba. May. 2015. Seismic performance of Japanese traditional timber temple Kencho-ji. IABSE Conference Nara, Japan, Nara 2015: Elegance in Structures – Report. doi:10.2749/222137815815773657.
  • Fujita, K., T. Hanazato, and I. Sakamoto. 2004. Earthquake response monitoring and seismic performance of five-storied timber pagoda. 13th World Conference on Earthquake Engineering, Vancouver, Canada.
  • Fujita, K. 2019. Dynamic performance of bracket complexes used in traditional timber structures in Japan. Proceedings of the Japan Academy, Series B: Physical and Biological Sciences 95:568–80. doi:10.2183/pjab.95.038.
  • Fukuwa, N., T. Hirai, J. Tobita, and K. Kurata. 2016. Dynamic response of tall buildings on sedimentary basin to long-period seismic ground motion. Journal of Disaster Response 11:857–69. doi:10.20965/jdr.2016.p0857.
  • García-Macías, E., L. Ierimonti, I. Venanzi, and F. Ubertini. 2021. An innovative methodology for online surrogate-based model updating of historic buildings using monitoring data. International Journal of Architectural Heritage 15 (1):1–4. doi:10.1080/15583058.2019.1668495.
  • Gerhards, C. C. 1982. Effect of moisture content and temperature on the mechanical properties of wood: An analysis of immediate effects. Wood and Fiber 14:4–36.
  • Helmer-Smith, H., N. Vlachopoulos, M.-A. Dagenais, and B. Forbes. 2021. In-situ load testing of a WWII era timber Warren truss in the development of a structural health monitoring program. Engineering Structures 239:112274. doi:10.1016/j.engstruct.2021.112274.
  • Ierimonti, L., I. Venanzi, N. Cavalagli, F. Comodini, and F. Ubertini. 2020. An innovative continuous Bayesian model updating method for base-isolated RC buildings using vibration monitoring data. Mechanical Systems and Signal Processing 139:106600. doi:10.1016/j.ymssp.2019.106600.
  • Itami, T., K. Chiba, and M. Toyoshima. 2021. Evaluation of vibration characteristics for high-rise steel building using long-term observation records. 17th World Conference on Earthquake Engineering, 17WCEE Sendai, Japan.
  • Japan Meteorological Agency, Japan. 2011. https://www.jma.go.jp/jma/en/2011_Earthquake/2011_Earthquake.html
  • Japan Meteorological Agency. Past Meteorological Data. (2020). Downloaded in 2020 from JMA Official Site. https://www.data.jma.go.jp/obd/stats/etrn/index.php.
  • Kita, A., N. Cavalagli, and F. Ubertini. 2019. Temperature effects on static and dynamic behavior of Consoli Palace in Gubbio, Italy. Mechanical Systems and Signal Processing 120:180–202. doi:10.1016/j.ymssp.2018.10.021.
  • Kollmann, F. F. P., and W. A. Cote Jr. 1968. Principles of wood science and technology - I solid wood. Berlin: Springer-Verlag. 190.
  • Kusunoki, K., A. Tasai, and M. Teshigawara. 2012. Development of building monitoring system to evaluate residual seismic capacity after an earthquake. Proceedings of the Fifteenth World Conference on Earthquake Engineering, Lisbon, Portugal.
  • Kusunoki, K. 2020. Experimental study on the damage classification method with the performance curves of R/C structures derived from recorded accelerations. Journal of Structure and Construction Engineering Architectural Institute of Japan 85 (774):1055–65. (in Japanese). doi:10.3130/aijs.85.1055.
  • Lourenço, P. B., J. M. Branco, H. Sousa, and E. Poletti. 2020. Structural health assessment of timber structures: Selected papers from the SHATIS’19 conference. International Journal of Architectural Heritage. doi:10.1080/15583058.2020.1849912.
  • M 9.1 - 2011 Great Tohoku Earthquake, Japan. 2011. USGS. https://earthquake.usgs.gov/earthquakes/eventpage/official20110311054624120_30/executive
  • Masciotta, M. G., L. F. Ramos, and P. B. Lourenço. 2017. The importance of structural monitoring as a diagnosis and control tool in the restoration process of heritage structures: A case study in Portugal. Journal of Cultural Heritage 27:36–47. doi:10.1016/j.culher.2017.04.003.
  • Nakamura, N., M. Yamasaki, and K. Murata. 2015. Timber mechanics theory and application: Research group on timber strength and structures. JWRS ed. Japan: Kaiseisha Press.
  • Nii, A., Y. Hayashi, T. Morii, S. Ida, and Y. Suzuki. 2007. Vibrational characteristics of Machiya in Kyoto based on ambient vibration tests. Journal of Structural and Construction Engineering (Transactions of AIJ) 72:43–50. https://www.jstage.jst.go.jp/article/aijs/72/613/72_KJ00004557434/_pdf/-char/ja.
  • Nishino, T., T. Morishita, T. Hida, S. Oda, T. Tanuma, K. Suzuki, and M. Nagano, 2017. Variation of natural frequency according to long-term microtremor measurement of a super high-rise residential building. Transactions of the Annual Meeting AIJ August, Hiroshima, Japan (in Japanese).
  • Omori, F. 1921. Measurement of vibration of Gojunotos, or 5-story Buddhist stupas (Pagodas). Bulletin of the Imperial Earthquake Investigation Committee (In Japanese) 9:110–52.
  • Oosaki, Y. 1994. Introduction to spectrum analysis of new seismic motion. Tokyo, Japan: Kajima Institute Publishing. 9784306032705 (in Japanese).
  • Palma, P., and R. Steiger. 2020. Structural health monitoring of timber structures – Review of available methods and case studies. Construction and Building Materials 248:118528. doi:10.1016/j.conbuildmat.2020.118528.
  • Pan, H., K. Kusunoki, and Y. Hattori. 2019. Capacity-curve based damage evaluation approach for reinforced concrete buildings using seismic response data. Engineering Structures 197:109386. http://www.ncbi.nlm.nih.gov/pubmed/109386
  • Ponzo, F. C., R. Ditommaso, G. Auletta, and A. Mossucca. 2010. A fast method for structural health monitoring of Italian reinforced concrete strategic buildings. Bulletin of Earthquake Engineering 8 (6):1421–34. doi:10.1007/s10518-010-9194-6.
  • Rahmani, M., and M. I. Todorovska. 2021. Structural health monitoring of a 32-storey steel-frame building using 50 years of seismic monitoring data. Earthquake Engineering and Structural Dynamics 50 (6):1777–800. doi:10.1002/eqe.3422.
  • Ramos, L. F., L. Marques, P. B. Lourenço, G. de Roeck, A. Campos Costa, and J. C. A. Roque. 2010. Monitoring historical masonry structures with operational modal analysis: Two case studies. Mechanical Systems and Signal Processing 24 (5):1291–305. doi:10.1016/j.ymssp.2010.01.011.
  • Saisi, A., C. Gentile, and A. Ruccolo. 2018. Continuous monitoring of a challenging heritage tower in Monza, Italy. Journal of Civil Structural Health Monitoring 8 (1):77–90. doi:10.1007/s13349-017-0260-5.
  • Saito, S., and S. Shida. 2016. Equilibrium moisture content of wood estimated using the climate data of Japan. Mokuzai Gakkaishi 62:182–89. doi:10.2488/jwrs.62.182.
  • Saito, T., and J. L. Beck. 2010. Bayesian model selection for ARX models and its application to structural health monitoring. Earthquake Engineering and Structural Dynamics 39:15. doi:10.1002/eqe.1006.
  • Shida, S.2020. Wood science series 7. In Wood drying, Vol. 1 ed. Shida, S., and Kawasaki, Y., 71. Japan: Kaiseisya Press.
  • Siringoringo, D. M., and Y. Fujino. 2014. Long-term seismic monitoring of base-isolated building with emphasis on serviceability assessment. Earthquake Engineering and Structural Dynamics 44:4.
  • The Japanese Association for Conservation of Architectural Monuments (JACAM), Conservation and Repair Work Report of Kencho-ji Hatto (Important Cultural Property of Kanagawa Prefecture). 2002. Board of conservation and repair work of Kencho-Ji Hatto. September. (in Japanese).
  • Theoretical seismic ground motion research group. 1994. Seismic ground motion - synthesis and waveform processing. Tokyo, Japan: Kajima Institute Publishing. (in Japanese).
  • Tobita, Y., M. Nagano, H. Kitamura, T. Sato, K. Suzuki, Y. Matsuda, and T. Yamauchi. 2017. Study on torsional response of seismically isolated building on soil with inclined bedrock using strong motion records. AIJ Journal of Technology and Design 23:409–14. doi:10.3130/aijt.23.409.
  • Toyoda, T., K. Fujita, and K. Takano. 2019. Vibration measurement and structural performance evaluation of a 17th century timber guest house in Japan. Japan Architectural Review 2:16–25. doi:10.1002/2475-8876.12062.
  • Venanzi, I., A. Kita, N. Cavalagli, L. Ierimonti, and F. Ubertini. 2020. Earthquake-induced damage localization in an historic masonry tower through long-term dynamic monitoring and FE model calibration. Bulletin of Earthquake Engineering 18 (5):2247–74. doi:10.1007/s10518-019-00780-4.
  • Wakui, M., and J. Iyama. 2016. Noise reduction process and detection accuracy in non-linearity detection method in vibrational systems using the second time derivative of the absolute acceleration. Journal of Structural and Construction Engineering 81:1799–808. doi:10.3130/aijs.81.1799.
  • Wang, J., H. Chen, and X. Du. 2020. Study on the early warning mechanism for real-time monitored structural responses of a historical timber building. Measurement 165:108136. doi:10.1016/j.measurement.2020.108136.
  • Wood Technological Association of Japan, Japanese Wood, Forestry and Forest Products Research Institute, Japanese Ministry of Agriculture (in Japanese). 1966.
  • Yoshimura, T., and A. Nagamatsu. 1990. Research on modal analysis: (9th Report, Proposition of Multireference Curve-Fitting based on the Maximum Likelihood Method-Part 1). Transactions of Japan Society of Mechanical Engineers Series C 56 (523):527–36. doi:10.1299/kikaic.56.527.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.