Publication Cover
International Journal of Architectural Heritage
Conservation, Analysis, and Restoration
Volume 17, 2023 - Issue 8
449
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Numerical Modelling of Traditional Buildings Composed of Timber Frames and Masonry Walls under Seismic Loading

&
Pages 1256-1289 | Received 09 Jun 2021, Accepted 17 Jan 2022, Published online: 14 Feb 2022

References

  • Augenti, N., F. Parisi, A. Prota, and G. Manfredi. 2011. In-Plane Lateral Response of a Full-Scale Masonry Subassemblage with and without an Inorganic Matrix-Grid Strengthening System. Journal of Composites for Construction 15 (4):578–90. doi:10.1061/(ASCE)CC.1943-5614.0000193.
  • Bertodli, S. H. , L. D. Decanini, and C. Gavarini Ottobre. 1993. Telai Tamponati Soggetti ad Azione Sismiche. Un Modello Semplificato Confronto Sperimentale e Numerico. 6º Convegno Nazionale L'Ingegneria Sismica in Italia. Perugia. 815–824.
  • Bilgin, H., and O. Korini. 2014. “A New Modeling Approach in the Pushover Analysis of Masonry Structures.” International Students’ Conference of Civil Engineering, ISCCE, Tirana, Albania, May 2012, EpokaUniversity.
  • Bocca, P., A. Carpinteri, and S. Valente. 1989. Fracture Mechanics of Brick Masonry: Size Effects and Snap-Back Analysis. Materials and Sructures 22 (5):364–73. http://staff.polito.it/alberto.carpinteri/papers/CARPINTERI_1989_N.72_MS.pdf.
  • Boroschek, R., P. Soto, and R. León Universidad de Chile . 2010. Registros del terremoto 27 de febrero 2010. Santiago (Chile): Red Nacional de Acelerografos. Informe RENADIC.
  • CEN. 2005. “EN 1996-1–1: Eurocode 6: Design of Masonry Structures - Part 1–1: General Rules for Reinforced and Unreinforced Masonry Structures.” https://www.phd.eng.br/wp-content/uploads/2015/02/en.1996.1.1.2005.pdf.
  • CEN EC5 1.2. 2004. Eurocode 5 – Design of Timber Structures Part 1-2: General – Structural Fire Design. Eurocode 5 – Design of Timber Structures. 1–69. doi: 10.1680/cien.2001.144.6.39.
  • Chen, C., H. Qiu, and L. Yong. 2016. Flexural Behaviour of Timber Dovetail Mortise-Tenon Joints. Construction and Building Materials 112 (June):366–77. doi:10.1016/j.conbuildmat.2016.02.074.
  • Chui, Y. H., and C. Ni. 1997. Load-Embedment Response of Timber to Reverse Cyclic Load. Wood and Fiber Sci 29 (2):148–60.
  • Chun, Q., Z. Yue, and J. Pan. 2011. Experimental Study on Seismic Characteristics of Typical Mortise- Tenon Joints of Chinese Southern Traditional Timber Frame Buildings. SCIENCE CHINA Technological Sciences 54 (9):2404–11. doi:10.1007/s11431-011-4448-3.
  • Ciocci, M. P. 2015. Structural Analysis of the TimberStructure of Ica Cathedral, Peru. Master thesis. Portugal: University of Minho.
  • Ciocci, M. P., S. Sharma, and P. B. Lourenço. 2018. Engineering Simulations of a Super-Complex Cultural Heritage Building: Ica Cathedral in Peru. Meccanica 53 (7):1931–58. doi:10.1007/s11012-017-0720-3.
  • CSI. 2016. “Technical Notes Manual For SAP2000.” www.csiamerica.com.
  • D’Ambra, C., G. P. Lignola, and A. Prota. 2016. Multi-Scale Analysis of In-Plane Behaviour of Tuff Masonry. The Open Construction and Building Technology Journal 10 (1):312–28. doi:10.2174/1874836801610010312.
  • Darwin, D., and D. A. W. Pecknold. 1974. Inelastic Model for Cyclic Biaxial Loading of Reinforced Concrete. Urbana, Illinois: University of Illinois.
  • Darwin, D., and D. A. W. Pecknold. 1977. Nonlinear Biaxial Stress-Strain Law for Concrete. Journal of the Enfineering Mechanics Division 103 (2):231–41.
  • Decanini, L., F. Mollaioli, A. Mura, and R. Saragoni . 2004. “Seismic Performance of Masonry Infilled R/C Frames.” In 13th World Conference on Earthquake Engineering Vancouver B.C., Canada. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.471.603&rep=rep1&type=pdf.
  • Endo, Y., L. Pelà, P. Roca, F. da Porto, and C. Modena. 2015. Comparison of Seismic Analysis Methods Applied to a Historical Church Struck by 2009 L’Aquila Earthquake. Bulletin of Earthquake Engineering 13 (12):3749–78. doi:10.1007/s10518-015-9796-0.
  • Fajfar, P. 1999. Capacity Spectrum Method Based on Ielastic Demand Sectra. Earthquake Engineering & Structural Dynamics 28 (9):979–93. doi:10.1002/(SICI)1096-9845(199909)28:9<979::AID-EQE850>3.0.CO;2-1.
  • Fajfar, P., M. Eeri, and M. Eeri. 2000. A Nonlinear Analysis Method for Performance Based Seismic Design. Earthquake Spectra 16 (3):573–92. doi:10.1193/1.1586128.
  • Foschi, R. O. 1974. Load-Slip Characteristics of Nails. Wood Science 7 (1):69–74.
  • Gazzola, E. A., R. G. Drysdale, and A. S. Essawy. 1985. “Bending of Concrete Masonry Walls at Different Angles to the Bed Joints.” In 3rd North American Masonry Conference. Arlington Texas, United States, 27 .
  • González, G., and J. Gutiérrez. 2005. Structural Performance of Bamboo ‘bahareque’ Walls under Cyclic Load. Journal of Bamboo and Rattan 4 (4):353–68. doi:10.1163/156915905775008345.
  • Griffith, M. C., and J. Vaculik. 2007. Out-of-Plane Flexural Strength of Unreinforced Clay Brick Masonry Walls. TMS Journal 25 (1): 53–68.
  • Hordijk, D. A. 1991. Local approach to fatigue of concrete. Doctoral thesis. Delft, Netherlands: Department of Civil Engineering and Geosciences. Delft University of Technology. https://repository.tudelft.nl/islandora/object/uuid%3Afa87147b-8201-47ed-83d7-b812b09c5fbb.
  • Instituto Nacional de Normalización. 2009. “NCh433.Of1996 Modificada En 2009 - Earthquake Resistant Design of Buildings,” 1–43. http://ecommerce.inn.cl/index.php.
  • Italian Ministry of Infrastructure and Transport. 2018. NTC 2018 - D.M. 17.01.18: Aggiornamento Delle ‘Norme Tecniche per Le Costruzioni’, 1–198.
  • Jiménez, B. 2015. Los Entramados Tradicionales de Madera en los Cerros Alegre y Concepción en Valparaíso, Chile. Caracterización histórica y técnica de las viviendas de finales del siglo XIX y comienzos del XX. Undergraduate thesis. Valparaíso, Chile: Department of Architecture, Universidad Técnica Federico Santa María.
  • Jiménez, B. 2021. Seismic Vulnerability Assessment of Traditional Timber Frame and Masonry Wall Buildings : Aplication to the Historical Centre of Valparaíso, Chile. Doctoral thesis. In Barcelona, Spain: Universitat Politècnica de Catalunya. http://www.tdx.cat/handle/10803/671491.
  • Jiménez, B., L. Pelà, and M. Hurtado. 2018. Building Survey Forms for Heterogeneous Urban Areas in Seismically Hazardous Zones. Application to the Historical Center of Valparaíso, Chile. International Journal of Architectural Heritage in Press 12 (7–8):1076–111. doi:10.1080/15583058.2018.1503370.
  • Jiménez, B., S. Saloustros, and L. Pelà. 2021. Seismic Vulnerability Index Method for Hybrid Timber–Masonry Structures. Numerical Calibration and Application to the City of Valparaíso, Chile. Journal of Building Engineering 44 (December):103185. doi:10.1016/J.JOBE.2021.103185.
  • Kalkbrenner, P., L. Pelà, and C. Sandoval. 2019. Multi Directional Pushover Analysis of Irregular Masonry Buildings without Box Behavior. Engineering Structures 201 (December):109534. doi:10.1016/j.engstruct.2019.109534.
  • Kaushik, H. B., D. C. Rai, and S. K. Jain. 2007. Stress-Strain Characteristics of Clay Brick Masonry under Uniaxial Compression. Journal of Materials in Civil Engineering 19 (9):728–39. doi:10.1061/(ASCE)0899-1561(2007)19:9(728).
  • Kouris, L. A. S., and A. J. Kappos. 2012. Detailed and Simplified Non-Linear Models for Timber-Framed Masonry Structures. Journal of Cultural Heritage 13 (1):47–58. doi:10.1016/j.culher.2011.05.009.
  • Kouris, L. A. S., and A. J. Kappos. 2014. A Practice-Oriented Model for Pushover Analysis of a Class of Timber-Framed Masonry Buildings. Engineering Structures 75:489–506. doi:10.1016/j.engstruct.2014.06.012.
  • Kouris, L. A. S., A. J. K. Meireles, and R. Bento. 2014. Simple and Complex Modelling of Timber-Framed Masonry Walls in Pombalino Buildings. Bulletin of Earthquake Engineering 12 (4):1777–803. doi:10.1007/s10518-014-9586-0.
  • Lourenço, P. B. 2000. Anisotropic Softening Model for Masonry Plates and Shells. Journal of Structural Engineering 126 (9):1008–16. doi:10.1061/(ASCE)0733-9445(2000)126:9(1008).
  • Lukic, R., E. Poletti, H. Rodrigues, and G. Vasconcelos. 2018. Numerical Modelling of the Cyclic Behavior of Timber-Framed Structures. Engineering Structures 165 (March):210–21. doi:10.1016/j.engstruct.2018.03.039.
  • MINVU. 2013. Proyecto de intervención estructural de construcciones de tierra NTM 002. ISBN 978-956-7674-92-3
  • Moore, D., and D. D’Ayala. 2011. Racking Behaviour of Traditional Peruvian Shear Walls. MEng Civil Engineering Undergraduate Dissertation. Bath: University of Bath.
  • NTC-Circolare. 2018. Circolare 21 Gennaio 2019 n. 7 C.S.LL.PP. Istruzioni per l’applicazione Dell’aggiornamento Delle ‘Norme Tecniche per Le Costruzioni’ Di Cui Al D.M. 17/01/2018. Consiglio Superiore Dei Lavori Pubblici.
  • Ogawa, K., Y. Sasaki, and M. Yamasaki. 2016. Theoretical Estimation of the Mechanical Performance of Traditional Mortise–Tenon Joint Involving a Gap. Journal of Wood Science 62 (3):242–50. doi:10.1007/s10086-016-1544-9.
  • Pantò, B., L. Silva, G. Vasconcelos, and P. B. Lourenço. 2019. Macro-Modelling Approach for Assessment of out-of-Plane Behavior of Brick Masonry Infill Walls. Engineering Structures 181 181 (August 2018):529–49. doi:10.1016/j.engstruct.2018.12.019
  • Perez Galaz, V. 1990. Manual 13: Manual de Cálculo de Construcciones En Madera 2a. Santiago (Chile): INFOR.
  • Perrone, M. 2011. Study of El Comercio Hotel, Lima (Peru). Numerical Modelling of a Historic Earthen Building Made of Non-Conventional Materials and Located in Seismic Zones. Doctoral thesis. In Chieti-Pescara: Universita’ degli Studi “G. d’Annunzio Chieti-Pescara.
  • Petracca, M., L. Pelà, R. Rossi, S. Oller, G. Camata, and E. Spacone. 2017. Multiscale Computational First Order Homogenization of Thick Shells for the Analysis of Out-of-Plane Loaded Masonry Walls. Computer Methods in Applied Mechanics and Engineering 315:273–301. doi:10.1016/j.cma.2016.10.046.
  • Poletti, E. 2013. Characterization of the Seismic Behaviour of Traditional Timber Frame Walls. Doctoral thesis. Minho: Universidade do Minho.
  • Poletti, E., P. B. Lourenco, and M. P. Ciocci. 2016. Numerical Approaches for the Analysis of Timber Frame Walls. In Historical Earthquake-Resistant Timber Framing in the Mediterranean Area. HEaRT 2015, ed. H.Cruz, Saporiti Machado J., A. Campos Costa, P.J. Candeias, N. Ruggieri, and J. M. Catarino, et al., 183–192. Switzerland: Springer Nature. doi:10.1007/978-3-319-39492-3.
  • Poletti, E., and G. Vasconcelos. 2015. Seismic Performance of Traditional Half-Timbered Walls: Experimental Results. In Historical Earthquake-Resistant Timber Frames in the Mediterranean Area, ed. N. Ruggieri, G. Tampone, and R. Zinno, 171. Switzerland: Springer, Cham.
  • Porteous, J., and A. Kermani. 2004. Structural Timber Design to Eurocode 5. Vol. 2004, 2nd ed. Oxford: Blackwell Science Ltd. doi:10.1680/cien.2001.144.6.39.
  • Quinn, N. 2016. Structural Characterization and Numerical Modeling of Historic Quincha Walls Structural Characterization and Numerical Modeling of Historic Quincha Walls. International Journal of Architectural Heritage (December). doi:10.1080/15583058.2015.1113337.
  • Reinhardt, H. W. 1984. “Fracture Mechanics of an Elastic Softening Material like Concrete.” https://www.semanticscholar.org/paper/Fracture-Mechanics-of-an-Elastic-Softening-Material-Reinhardt/78a8ccfe2f84bf4bc0646d5dde0fd2c7182d11fe.
  • Roca, P., M. Cervera, G. Gariup, and L. Pela. 2010. Structural Analysis of Masonry Historical Constructions. Classical and Advanced Approaches. Archives of Computational Methods in Engineering 17 (3):299–325. doi:10.1007/s11831-010-9046-1.
  • Saloustros, S., M. Cervera, and L. Pelà. 2019. Challenges, Tools and Applications of Tracking Algorithms in the Numerical Modelling of Cracks in Concrete and Masonry Structures. Archives of Computational Methods in Engineering 26 (4):961–1005. doi:10.1007/s11831-018-9274-3.
  • Saloustros, S., L. Pelà, M. Cervera, and P. Roca. 2017a. Finite Element Modelling of Internal and Multiple Localized Cracks. Computational Mechanics 59 (2):299–316. doi:10.1007/s00466-016-1351-6.
  • Saloustros, S., L. Pelà, M. Cervera, and P. Roca. 2017b. An Enhanced Finite Element Macro-Model for the Realistic Simulation of Localized Cracks in Masonry Structures: A Large-Scale Application International Journal of Architectural Heritage. 12 (3):432–47 10.1080/15583058.2017.1323245.
  • Saloustros, S., L. Pelà, and P. Roca. 2020. Nonlinear Numerical Modeling of Complex Masonry Heritage Structures Considering History-Related Phenomena in Staged Construction Analysis and Material Uncertainty in Seismic Assessment. Journal of Performance of Constructed Facilities 34 (5):04020096. doi:10.1061/(asce)cf.1943-5509.0001494.
  • Sassun, K., T. J. Sullivan, P. Morandi, and D. Cardone. 2016. Characterising the In-Plane Seismic Performance of Infill Masonry. Bulletin of the New Zealand Society for Earthquake Engineering 49 (No. 1):100–17. doi:10.5459/bnzsee.49.1.98-115.
  • Spyrakos, C., and A. Francioso. 2012. “Shaking Table Test and Pushover Analysis on a Scaled Masonry Building.” 15th World Conference on Earthquake Engineering. Lisbon: Sociedade Portuguesa de Engenharia Sísmica.
  • Stafford-Smith, B. 1963. Lateral Stiffness of Infilled Frames. Journal of Structural Division, ASCE 88 (6):183–99. doi:10.1061/JSDEAG.0000849.
  • Torrealva, D., E. Vicente, and T. Michiels. 2018. Testing of Materials and Building Components of Historic Adobe Buildings in Peru. Los Angeles: Getty Conservation Institute. https://hdl.handle.net/10020/gci_pubs/testing_materials.
  • Turnšek, V., and P. Sheppard. 1980. “The Shear and Flexural Resistance of Masonry Walls.” In International Research Conference on Earthquake Engineering IEEES (Skopje) , 517–573.
  • Vecchio, F. J., and M. P. Collins. 1986. The Modified Compression-Field Theory for Reinforced Concrete Elements Subjected to Shear. ACI Journal Proceedings 83 (2):219–31. doi:10.14359/10416.
  • Vecchio, F. J., and M. P. Collins. 1993. Compression Response of Cracked Reinforced Concrete. Journal of Structural Engineering 119 (12):3590–610. doi:10.1061/(ASCE)0733-9445(1993)119:12(3590).
  • Vieux-champagne, F., G. Stéphane, Y. Sieffert, P. Garcia, C. Faye, J. C. Duccini, and L. Daudeville Aug . 2014. Numerical Analysis of Timber-Frame Structures with Infill under Seismic Loading. World Conference on Timber Engineering (WCTE 2014). Quebec, Canada, 1912–1919.
  • Xie, Q., L. Wang, P. Zheng, L. Zhang, and H. Weibing. 2018. Rotational Behavior of Degraded Traditional Mortise-Tenon Joints : Experimental Tests and Hysteretic Model. International Journal of Architectural Heritage 12 (1):125–36. doi:10.1080/15583058.2017.1390629.
  • Xu, J. 2006. Development of a General Dynamic Hysteretic Light-Frame Structure Model and Study on the Torsional Behavior of Openfront Light-Frame Structures. Doctoral thesis. Washington: Department of Civil & Environmental Engineering, Washington State University.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.