Publication Cover
International Journal of Architectural Heritage
Conservation, Analysis, and Restoration
Volume 17, 2023 - Issue 10
185
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Rotational Performance of Traditional Straight Mortise-Tenon Joints with Gap: Theoretical Model and Numerical Analyses

, ORCID Icon, , &
Pages 1701-1718 | Received 14 Feb 2022, Accepted 19 Apr 2022, Published online: 03 Jun 2022

References

  • Abrate, S. 2008. Criteria for yielding or failure of cellular material. Journal of Sandwich Structures & Materials 10 (1):5–51. doi:10.1177/1099636207070997.
  • Chang, W. S., M. F. Hsu, and K. Komatsu. 2006. Rotational performance of traditional Nuki joints with gap I: Theory and verification. Journal of Wood Science 52 (1):58–62. doi:10.1007/s10086-005-0734-7.
  • Chang, W. S., and M. F. Hsu. 2007. Rotational performance of traditional Nuki joints with gap II: The behavior of butted Nuki joint and its comparison with continuous Nuki joint. Journal of Wood Science 53:401–07. doi:10.1007/s10086-007-0880-1.
  • Chen, C. C., H. X. Qiu, and Y. Lu. 2016. Flexural behaviour of timber dovetail mortise-tenon joints. Construction and Building Materials 112:366–77. doi:10.1016/j.conbuildmat.2016.02.074.
  • Chen, L. K., S. C. Li, K. P. Zhao, Z. Y. Chen, T. Song, L. Zhang, and J. Z. Jang. 2020. Experimental and numerical investigation on seismic performance of one-way straight mortise-tenon joints based on a novel method to simulate damage of deteriorated ancient Chinese timber buildings. Journal of Performance of Constructed Facilities 34 (2):04019119. doi:10.1061/(ASCE)CF.1943-5509.0001390.
  • Chui, Y. H., and Y. T. Li. 2005. Modeling timber moment connection under reversed cyclic loading. Journal of Structural Engineering 131 (11):1757–63. doi:10.1061/(ASCE)0733-9445(2005)131:11(1757).
  • Crayssac, E., X. B. Song, Y. J. Wu, and K. Li. 2018. Lateral performance of mortise-tenon jointed traditional timber frames with wood panel infill. Engineering Structures 161:223–30. doi:10.1016/j.engstruct.2018.02.022.
  • D’Ayala, D. F., and P. H. Tsai. 2008. Seismic vulnerability of historic Dieh-Dou timber structures in Taiwan. Engineering Structures 30 (8):2101–13. doi:10.1016/j.engstruct.2007.11.007.
  • Fang, D. P., S. Iwasaki, M. H. Yu, and Q. P. Shen. 2001. Ancient Chinese timber architecture. I: Experimental study. Journal of Structural Engineering 127 (11):1348–57. doi:10.1061/(ASCE)0733-9445(2001)127:11(1348).
  • Feio, A. O., P. B. Lourenco, and J. S. Machado. 2014. Testing and modeling of a traditional timber mortise and tenon joint. Materials and Structures 47 (1–2):213–25. doi:10.1617/s11527-013-0056-y.
  • He, J. X., P. Yu, J. Wang, Q. S. Yang, L. Han, and L. L. Xie. 2021. Theoretical model of bending moment for the penetrated mortise-tenon joint involving gaps in traditional timber structure. Journal of Building Engineering 42:103102. doi:10.1016/j.jobe.2021.103102.
  • Hill, R. 1950. The mathematical theory of plasticity. Oxford: Clarendon Press.
  • King, W. S., J. Y. R. Yen, and Y. N. A. Yen. 1996. Joint characteristics of traditional Chinese wooden frames. Engineering Struct Ures 18 (8):635–44. doi:10.1016/0141-0296(96)00203-9.
  • Li, J. 1950. Yingzao Fashi (Construction method). Kaifeng: Royal Press.
  • Li, X. W., J. H. Zhao, G. W. Ma, and W. Chen. 2015. Experimental study on the seismic performance of a double-span traditional timber frame. Engineering Structures 98:141–50. doi:10.1016/j.engstruct.2015.04.031.
  • Li, Y. Z., S. Y. Cao, and J. Y. Xue. 2016. Analysis on mechanical behavior of dovetail mortise-tenon joints with looseness in traditional timber buildings. Structural Engineering and Mechanics 60 (5):903–21. doi:10.12989/sem.2016.60.5.903.
  • Li, S. C., L. K. Chen, L. Z. Jiang, and J. Q. Li. 2020. Experimental investigation on the seismic behavior of the semi-rigid one-way straight mortise-tenon joint of a historical timber building. International Journal of Architectural Heritage 14 (8):1–13. doi:10.1080/15583058.2019.1587041.
  • Luo, Z. W. 2001. Chinese ancient architecture. Shanghai: Shanghai Ancient Books Publishing House.
  • Ma, L. L., J. Y. Xue, W. Q. Dai, X. Zhang, and X. B. Zhao. 2020. Moment-rotation relationship of mortise-through-tenon connections in historic timber structures. Construction and Building Materials 232:117285. doi:10.1016/j.conbuildmat.2019.117285.
  • Ogawa, K., Y. Sasaki, and M. Yamasaki. 2016. Theoretical estimation of the mechanical performance of traditional mortise-tenon joint involving a gap. Journal of Wood Science 62 (3):242–50. doi:10.1007/s10086-016-1544-9.
  • Pang, S. J., J. K. Oh, J. S. Park, and C. Y. Park. 2011. Moment-carrying capacity of dovetailed mortise and tenon joints with or without beam shoulder. Journal of Structural Engineering 137 (7):785–89. doi:10.1061/(ASCE)ST.1943-541X.0000323.
  • Perstorper, M., M. Johansson, R. Kliger, and G. Johansson. 2001. Distortion of Norway spruce timber Part 1. Variation of relevant wood properties. Holz als Roh-und Werkstoff 59 (1–2):94–103. doi:10.1007/s001070050481.
  • Santana, C. L. O., and N. T. Mascia. 2009. Wooden framed structures with semi-rigid connections: Quantitative approach focused on design needs. Structural Engineering and Mechanics: An International Journal 31 (3):315–31. doi:10.12989/sem.2009.31.3.315.
  • Technical Committee for Standardization of Timber (TCST). 1992. GB 1927-1943-1991, physical and mechanical tests of wood. Beijing: China Standards Press.
  • Technical Committee ISO/TC 165, Timber structure. 2003. ISO 16670: 2003 (E), timber structures—Joints made with mechanical fasteners—Quasi-static reversed-cyclic test method. Ottawa, Canada: Technical Committee ISO/TC 165, Timber structure.
  • Xie, Q. F., L. Wang, P. J. Zheng, L. P. Zhang, and W. B. Hu. 2018. Rotational behavior of degraded traditional mortise-tenon joints: Experimental tests and hysteretic model. International Journal of Architectural Heritage 12 (1):125–36. doi:10.1080/15583058.2017.1390629.
  • Xie, Q. F., L. P. Zhang, W. J. Zhou, L. Wang, and T. G. Zhou. 2019. Cyclical behavior of timber mortise-tenon joints strengthened with shape memory alloy: Experiments and moment-rotation model. International Journal of Architectural Heritage 13 (8):1209–22. doi:10.1080/15583058.2018.1501116.
  • Xie, Q. F., B. Z. Zhang, L. P. Zhang, and T. T. Guo. 2021. Normal contact performance of mortise and tenon joint: Theoretical analysis and numerical simulation. Journal of Wood Science 67 (1):1–21. doi:10.1186/s10086-021-01963-x.
  • Xue, J. Y., C. W. Wu, X. C. Zhang, and Y. T. Zhang. 2020. Effect of pre-tension in superelastic shape memory alloy on cyclic behavior of reinforced mortise-tenon joints. Construction and Building Materials 241:118136. doi:10.1016/j.conbuildmat.2020.118136.
  • Xue, J. Y., D. Xu, and H. L. Xia. 2020. Experimental study on seismic performance of through-tenon joints with looseness in ancient timber structures. International Journal of Architectural Heritage 14 (4):483–95. doi:10.1080/15583058.2018.1552996.
  • Xue, J. Y., C. W. Wu, X. C. Zhang, and Z. D. Qi. 2021. Experimental and numerical study of mortise-tenon joints reinforced with innovative friction damper. Engineering Structures 230:111701. doi:10.1016/j.engstruct.2020.111701.
  • Yang, Q. S., P. Yu, S. S. Law. 2020. Load resisting mechanism of the mortise-tenon connection with gaps under in-plane forces and moments. Engineering Structures 219:110755. doi:10.1016/j.engstruct.2020.110755.
  • Yang, Q. S., C. Gao, J. Wang, K. L. Ren, and N. Yang. 2020. Probability distribution of gaps between tenon and mortise of traditional timber structures. European Journal of Wood and Wood Products 78 (1):27–39. doi:10.1007/s00107-019-01472-1.
  • Zhang, B. Z., Q. F. Xie, S. Y. Li, L. P. Zhang, and Y. J. Wu. 2022. Effects of gaps on the rotational performance of traditional straight mortise-tenon joints. Engineering Structures 260:114231. doi:10.1016/j.engstruct.2022.114231.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.