Publication Cover
International Journal of Architectural Heritage
Conservation, Analysis, and Restoration
Volume 17, 2023 - Issue 11
218
Views
1
CrossRef citations to date
0
Altmetric
Research Article

The Reaction-to-fire Performance of Wood Covered with A Transparent Film: A Potential Method for the Preservation of Chinese Wooden Historical Buildings

, , ORCID Icon, , , & show all
Pages 1778-1790 | Received 01 Dec 2021, Accepted 21 Apr 2022, Published online: 11 May 2022

References

  • 5660-1 I. 2015. Reaction-to-fire tests—heat release, smoke production and mass loss rate—part 1: heat release rate (cone calorimeter method). Geneva, Switzerland: International Organization for Standardization.
  • Almeida, T. H., D. H. Almeida, E. Chahud, L. Branco, R. V. Pinheiro, A. L. Christoforo, and F. A. R. Lahr. 2019. Mechanical performance of wood under artificial and natural weathering treatments. BioRescources 14 (3):6267–77.
  • Baysal, E., E. D. Tomak, E. Topaloglu, and E. Pesman. 2016. Surface properties of bamboo and scots pine impregnated with boron and copper based wood preservatives after accelerated weathering. Maderas-Ciencia Y Tecnologia 18 (2):253–64.
  • Biao, Z., Z. Xiao-meng, and C. Ming-yong. 2012. Fire protection of historic buildings: A case study of group-living yard in Tianjin. Journal of Cultural Heritage 13 (4):389–96. doi:10.1016/j.culher.2011.12.007.
  • Boonmee, N., J. G. and, and Quintiere (2002) Glowing and flaming autoignition of wood - ScienceDirect. Proceedings of the Combustion Institute 29 289–96.
  • Boonmee, N., and J. G. Quintiere (2005) Glowing ignition of wood: The onset of surface combustion. Proceedings of the Combustion Institute 30 2303–10.
  • Chakraborty, A., S. Ghosh, P. Mukhopadhyay, S. M. Dinara, and D. Biswas. 2014. Trapping Effect Analysis of AlGaN/InGaN/GaN Heterostructure by Conductance-Frequency Measurement. MRS Proc 33:81–87.
  • Cruz, H., D. Yeomans, E. Tsakanika, N. Macchioni, A. Jorissen, M. Touza, M. Mannucci, and P. B. Lourenço. 2015. Guidelines for on-site assessment of historic timber structures. International Journal of Architectural Heritage 9 (3):277–89. doi:10.1080/15583058.2013.774070.
  • Fabiyi, J. S., A. G. McDonald, M. P. Wolcott, and P. R. Griffiths. 2008. Wood plastic composites weathering: Visual appearance and chemical changes. Polymer Degradation and Stability 93 (8):1405–14. doi:10.1016/j.polymdegradstab.2008.05.024.
  • Ferretti, V., M. Bottero, and G. Mondini. 2014. Decision making and cultural heritage: An application of the multi-attribute value theory for the reuse of historical buildings. Journal of Cultural Heritage 15 (6):644–55. doi:10.1016/j.culher.2013.12.007.
  • Frangi, A., and M. Fontana. 2003. Thermal expansion of wood and timber-concrete composite members under iso-fire exposure. Fire Safety Ence 7:1111–22. doi:10.3801/IAFSS.FSS.7-1111.
  • Gutarowska, B., S. Celikkol-Aydin, V. Bonifay, A. Otlewska, E. Aydin, A. L. Oldham, J. I. Brauer, K. E. Duncan, J. Adamiak, and J. A. Sunner. 2015. Metabolomic and high-throughput sequencing analysis—modern approach for the assessment of biodeterioration of materials from historic buildings. Frontiers in Microbiology 6:979. doi:10.3389/fmicb.2015.00979.
  • Huerto-Cardenas, H. E., N. Aste, C. Del Pero, S. Della Torre, and F. Leonforte. 2021. Effects of climate change on the future of heritage buildings: case study and applied methodology. Climate 9 (8):132. doi:10.3390/cli9080132.
  • Huijbregts, Z., H. Schellen, J. van Schijndel, and B. Ankersmit. 2015. Modelling of heat and moisture induced strain to assess the impact of present and historical indoor climate conditions on mechanical degradation of a wooden cabinet. Journal of Cultural Heritage 16 (4):419–27. doi:10.1016/j.culher.2014.11.001.
  • Kránitz, K., W. Sonderegger, C.-T. Bues, and P. Niemz. 2016. Effects of aging on wood: A literature review. Wood Science and Technology 50 (1):7–22. doi:10.1007/s00226-015-0766-0.
  • Li, J., H. Li, B. Zhou, X. Wang, and H. Zhang. 2018. Investigation and statistical analysis of fire loads of 83 historic buildings in Beijing. International Journal of Architectural Heritage 14 (3): 471–482. doi:10.1080/15583058.2018.1550535.
  • Li, K., Y. Zou, S. Bourbigot, J. Ji, and X. Chen (2021) Pressure effects on morphology of isotropic char layer, shrinkage, cracking and reduced heat transfer of wooden material. Proceedings of the Combustion Institute 38 5063–71.
  • Linteris, G., L. Gewuerz, K. McGrattan, and G. Forney. 2005. Modeling solid sample burning. In Fire Safety Science--Proceedings of the Eight International Symposium, International Association for Fire Safety Science, Boston, MA. September 18-23, 2005. Beijing, CH. [online]. (Retrieved May 6, 2022). Available from: https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=100940.
  • Łucejko, J. J., F. Modugno, E. Ribechini, D. Tamburini, and M. P. Colombini. 2015. Analytical instrumental techniques to study archaeological wood degradation. Applied Spectroscopy Reviews 50 (7):584–625. doi:10.1080/05704928.2015.1046181.
  • Matsuo, M., K. Umemura, and S. Kawai. 2014. Kinetic analysis of color changes in keyaki (Zelkova serrata) and sugi (Cryptomeria japonica) wood during heat treatment. Journal of Wood Science 60 (1):12–20. doi:10.1007/s10086-013-1369-8.
  • Metsä-Kortelainen, S., and H. Viitanen. 2017. Durability of thermally modified sapwood and heartwood of Scots pine and Norway spruce in the modified double layer test. Wood Material Science & Engineering 12 (3):129–39. doi:10.1080/17480272.2015.1061596.
  • Pelosi, C., G. Rubino, G. Capobianco, L. Lanteri, G. Agresti, G. Bonifazi, S. Serranti, R. Picchio, and A. Lo Monaco. 2021. A multi-technique approach to evaluate the surface properties of heat-treated chestnut wood finished with a water-based coating. Coatings 11 (6):706. doi:10.3390/coatings11060706.
  • Sharratt, V., C. A. S. Hill, J. Zaihan, and D. P. R. Kint. 2010. Photodegradation and weathering effects on timber surface moisture profiles as studied using dynamic vapour sorption. Polymer Degradation and Stability 95 (12):2659–62. doi:10.1016/j.polymdegradstab.2010.07.011.
  • Sonderegger, W., K. Kránitz, C.-T. Bues, and P. Niemz. 2015. Aging effects on physical and mechanical properties of spruce, fir and oak wood. Journal of Cultural Heritage 16 (6):883–89. doi:10.1016/j.culher.2015.02.002.
  • Taylor-Firth, A. 1991. Wood: Nature’s cellular, polymeric fibre-composite. Construction and Building Materials 5 (1). doi:10.1016/0950-0618(91)90037-L.
  • Terrei, L., Z. Acem, V. Georges, P. Lardet, P. Boulet, and G. Parent. 2019. Experimental tools applied to ignition study of spruce wood under cone calorimeter. Fire Safety Journal 108:102845. doi:10.1016/j.firesaf.2019.102845.
  • Tomak, E. D., D. Ustaomer, M. A. Ermeydan, and S. Yildiz. 2018. An investigation of surface properties of thermally modified wood during natural weathering for 48 months. Measurement 127:187–97. doi:10.1016/j.measurement.2018.05.102.
  • Tung, S.-F., H.-C. Su, C.-T. Tzeng, and C.-M. Lai. 2020. Experimental and numerical investigation of a room fire in a wooden-frame historical building. International Journal of Architectural Heritage 14 (1):106–18. doi:10.1080/15583058.2018.1510999.
  • Wang, N., Y. Fu, Y. Liu, H. Yu, and Y. Liu. 2014. Synthesis of aluminum hydroxide thin coating and its influence on the thermomechanical and fire-resistant properties of wood. Holzforschung 68 (7):781–89. doi:10.1515/hf-2013-0196.
  • Zhong, Y., H. Q. Ren, and Z. H. Jiang. 2016. Effects of temperature on the compressive strength parallel to the grain of bamboo scrimbe. Materials 9 (6):436. doi:10.3390/ma9060436.
  • Zhou, B., J. Sun, X. Sun, K. Wang, C. Qingqing, X. Wang, and Y. Han. 2021a. The effects of hydrogen fluoride on the wooden surface of historic buildings during fire suppression using fluorinated chemical gases. International Journal of Architectural Heritage 1–11.
  • Zhou, B., K. Wang, M. Xu, W. Yang, F. Zhu, B. Sun, X. Wang, and W. Ke. 2021b. Influence of air-gap and thickness on the upward flame spread over discrete wood chips. Thermal Science and Engineering Progress 26:101106. doi:10.1016/j.tsep.2021.101106.
  • Zhou, B., H. Yoshioka, T. Noguchi, X. Wang, and C. C. Lam. 2019. Experimental study on fire performance of weathered cedar. International Journal of Architectural Heritage 13 (8):1195–208. doi:10.1080/15583058.2018.1501115.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.