Publication Cover
International Journal of Architectural Heritage
Conservation, Analysis, and Restoration
Volume 18, 2024 - Issue 1
296
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Effects of Shrinkage Reducing Admixture and Polypropylene Fiber Utilization on Some Fresh State, Mechanical and Durability Properties of Khorasan Mortar

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1-20 | Received 25 Apr 2022, Accepted 06 Jul 2022, Published online: 15 Jul 2022

References

  • Altun, M. G., S. Özen, and A. Mardani-Aghabaglou. 2018. The effect of using polypropylene fiber on drying shrinkage of natural hydraulic lime mortars. Sakarya University Journal of Science 22(2):427–35. (in Turkish).
  • Aly, T., J. G. Sanjayan, and F. Collins. 2008. Effect of polypropylene fibers on shrinkage and cracking of concretes. Materials and Structures 41(10):1741–53. doi:10.1617/s11527-008-9361-2.
  • Arıoglu, N., and S. Acun. 2006. A research about a method for restoration of traditional lime mortars and plasters: A staging system approach. Building and Environment 41(9):1223–30. doi:10.1016/j.buildenv.2005.05.015.
  • Bakas, I., K. Georgiadis-Filikas, and K. J. Kontoleon. 2020. Treasures gutted by fire. Fire safety design awareness as a consequence of historic building accidents and disasters. IOP Conference Series: Earth and Environmental Science 410(1):012113. IOP Publishing. doi:10.1088/1755-1315/410/1/012113.
  • Barbero-Barrera, M. M., and N. F. Medina. 2018. The effect of polypropylene fibers on graphite-natural hydraulic lime pastes. Construction and Building Materials 184:591–601. doi:10.1016/j.conbuildmat.2018.06.121.
  • Benchiheub, D., C. Amouri, H. Houari, and M. Belachia. 2018. Effect of natural pozzolana and polypropylene fibers on the performance of lime mortar for old buildings restoration. Journal of Adhesion Science and Technology 32(12):1324–40. doi:10.1080/01694243.2017.1409068.
  • Biscontin, G., M. P. Birelli, and E. Zendri. 2002. Characterization of binders employed in the manufacture of Venetian historical mortars. Journal of Cultural Heritage 3(1):31–37. doi:10.1016/S1296-2074(02)01156-1.
  • Böke, H., S. Akkurt, and B. İpekoğlu. 2004. Tarihi yapılarda kullanılan horasan harcı ve sıvalarının özellikleri”, (The properties of khorasan mortar and plasters used in historical buildings. Yapi Magazine 269:90–95. (in [Turkish]).
  • Böke, H., S. Akkurt, B. İpekoğlu, and E. Uğurlu. 2006. Characteristics of brick used as aggregate in historic brick-lime mortars and plasters. Cement and Concrete Research 36(6):1115–22. doi:10.1016/j.cemconres.2006.03.011.
  • Brooks, J. J., M. M. Johari, and M. Mazloom. 2000. Effect of admixtures on the setting times of high-strength concrete. Cement and Concrete Composites 22(4):293–301. doi:10.1016/S0958-9465(00)00025-1.
  • Camargo, M. M., E. Adefrs Taye, J. A. Roether, D. Tilahun Redda, and A. R. Boccaccini. 2020. A review on natural fiber-reinforced geopolymer and cement-based composites. Materials 13(20):4603. doi:10.3390/ma13204603.
  • Chunxiang, Q., G. Fei, and L. Li. 2006. Mechanism and effect of shrinkage-reducing agent used in cement mortar. Journal of Functional Materials 37(2):287.
  • Collins, F., and J. G. Sanjayan. 2000. Effect of pore size distribution on drying shrinking of alkali-activated slag concrete. Cement and Concrete Research 30(9):1401–06. doi:10.1016/S0008-8846(00)00327-6.
  • Di Bella, G., V. Fiore, G. Galtieri, C. Borsellino, and A. Valenza. 2014. Effects of natural fibres reinforcement in lime plasters (kenaf and sisal vs. Polypropylene). Construction and Building Materials 58:159–65. doi:10.1016/j.conbuildmat.2014.02.026.
  • Durgun, M. Y., S. Özen, K. Karakuzu, V. Kobya, S. H. Bayqra, and A. Mardani-Aghabaglou. 2022. Effect of high temperature on polypropylene fiber-reinforced mortars containing colemanite wastes. Construction and Building Materials 316:125827. doi:10.1016/j.conbuildmat.2021.125827.
  • Erdoğdu, Ş., M. Nas, S. Nayır, and U. Kandil. 2017 Improvement of mechanical properties of lime mortars containing fly ash and polypropylene fibers by adding cement. 6th International Symposium on Conservation and Strengthening of Historical Buildings, Trabzon, Turkey. 247–56. (in Turkish).
  • Ersen, A., Gürdal, E., Güleç, A., Alkan N., Ersan H. Ö., Eruş M., Çağıran E., Baykır M., Akıncı G. “Geleneksel Harçlar ve Koruma Harçları”, (Traditional Mortars and Conservation Mortars), Journal of Restoration and Conservation Studies. Journal of Restoration Conservation Studies 16, pp. 36–50, 2016, Turkey. (in Turkish).
  • Fernández, J. M., A. Duran, I. Navarro-Blasco, J. Lanas, R. Sirera, and J. I. Alvarez. 2013. Influence of nanosilica and a polycarboxylate ether superplasticizer on the performance of lime mortars. Cement and Concrete Research 43:12–24. doi:10.1016/j.cemconres.2012.10.007.
  • Gameiro, A., A. S. Silva, R. Veiga, and A. Velosa. 2012. Hydration products of lime–metakaolin pastes at ambient temperature with ageing. Thermochimica Acta 535:36–41. doi:10.1016/j.tca.2012.02.013.
  • Gao, S., Z. Wang, W. Wang, and H. Qiu. 2018. Effect of shrinkage-reducing admixture and expansive agent on mechanical properties and drying shrinkage of Engineered Cementitious Composite (ECC). Construction and Building Materials 179:172–85. doi:10.1016/j.conbuildmat.2018.05.203.
  • Grassl, P., H. S. Wong, and N. R. Buenfeld. 2010. Influence of aggregate size and volume fraction on shrinkage induced micro-cracking of concrete and mortar. Cement and Concrete Research 40(1):85–93. doi:10.1016/j.cemconres.2009.09.012.
  • Grdic, Z. J., G. A. T. Curcic, N. S. Ristic, and I. M. Despotovic. 2012. Abrasion resistance of concrete micro-reinforced with polypropylene fibers. Construction and Building Materials 27(1):305–12. doi:10.1016/j.conbuildmat.2011.07.044.
  • Grilo, J., A. S. Silva, P. Faria, A. Gameiro, R. Veiga, and A. Velosa. 2014. Mechanical and mineralogical properties of natural hydraulic lime-metakaolin mortars in different curing conditions. Construction and Building Materials 51:287–94.
  • Grzybowski, M., and S. P. Shah. 1990. Shrinkage cracking of fiber reinforced concrete. ACI Materials Journal 87(2):138–48.
  • Güneyisi, E., M. Gesoğlu, A. Mohamadameen, R. Alzeebaree, Z. Algın, and K. Mermerdaş. 2014. Enhancement of shrinkage behavior of lightweight aggregate concretes by shrinkage reducing admixture and fiber reinforcement. Construction and Building Materials 54:91–98. doi:10.1016/j.conbuildmat.2013.12.041.
  • He, Z., Z. J. Li, M. Z. Chen, and W. Q. Liang. 2006. Properties of shrinkage-reducing admixture-modified pastes and mortar. Materials and Structures 39(4):445–53. doi:10.1007/s11527-005-9004-9.
  • Horszczaruk, E., P. Sikora, K. Cendrowski, and E. Mijowska. 2017. The effect of elevated temperature on the properties of cement mortars containing nanosilica and heavyweight aggregates. Construction and Building Materials 137:420–31. doi:10.1016/j.conbuildmat.2017.02.003.
  • Ingham, J. P. 2009. Diagnosing defects in lime-based construction materials. Journal of Architectural Conservation 15(3):59–80. doi:10.1080/13556207.2009.10785055.
  • Irshidat, M. R., and M. H. Al-Saleh. 2018. Thermal performance and fire resistance of nanoclay modified cementitious materials. Construction and Building Materials 159:213–19. doi:10.1016/j.conbuildmat.2017.10.127.
  • İsafça, T., K. Karakuzu, S. Özen, A. Doğangün, and A. Mardani-Aghabaglou. 2021. Effects of material properties on the mechanical and durability behaviors of Khorasan mortar mixtures: A review. Journal of Adhesion Science and Technology 35(23):2507–28. doi:10.1080/01694243.2021.1898859.
  • Iucolano, F., B. Liguori, and C. Colella. 2013. Fibre-reinforced lime-based mortars: A possible resource for ancient masonry restoration. Construction and Building Materials 38:785–89. doi:10.1016/j.conbuildmat.2012.09.050.
  • Izaguirre, A., J. Lanas, and J. I. Alvarez. 2009. Effect of water-repellent admixtures on the behaviour of aerial lime-based mortars. Cement and Concrete Research 39(11):1095–104. doi:10.1016/j.cemconres.2009.07.026.
  • Izaguirre, A., J. Lanas, and J. I. Alvarez. 2011. Effect of a polypropylene fibre on the behaviour of aerial lime-based mortars. Construction and Building Materials 25(2):992–1000. doi:10.1016/j.conbuildmat.2010.06.080.
  • Janotka, I., and T. Nürnbergerová. 2005. Effect of temperature on structural quality of the cement paste and high-strength concrete with silica fume. Nuclear Engineering and Design 235(17–19):2019–32. doi:10.1016/j.nucengdes.2005.05.011.
  • Kalia, S., B. S. Kaith, and I. Kaur. 2009. Pretreatments of natural fibers and their application as reinforcing material in polymer composites—a review. Polymer Engineering & Science 49(7):1253–72. doi:10.1002/pen.21328.
  • Karakuzu, K., V. Kobya, A. Mardani-Aghabaglou, B. Felekoğlu, and K. Ramyar. 2021. Adsorption properties of polycarboxylate ether-based high range water reducing admixture on cementitious systems: A review. Construction and Building Materials 312:125366. doi:10.1016/j.conbuildmat.2021.125366.
  • Kaya, T. İ., K. Karakuzu, S. Özen, A. Doğangün, and A. M. Aghabaglou. 2022a. Effect of polypropylene fiber and shrinkage reducing admixture utilization on water absorption of Khorasan mortar. Materials Today: Proceedings 57:730–33.
  • Kaya, T., K. Karakuzu, A. Mardani, and A. Doğangün. 2022b. Effect of Elevated Temperature on Some Properties of Polypropylene Fiber Reinforced Khorasan Mortar. 5th International Symposium on Innovative Approaches in Smart Technologies, Ankara, Türkiye. May 28. 23.
  • Köksal, F., O. Gencel, and M. Kaya. 2015. Combined effect of silica fume and expanded vermiculite on properties of lightweight mortars at ambient and elevated temperatures. Construction and Building Materials 88:175–87. doi:10.1016/j.conbuildmat.2015.04.021.
  • Kundu, S. P., S. Chakraborty, A. Roy, B. Adhikari, and S. B. Majumder. 2012. Chemically modified jute fibre reinforced non-pressure (NP) concrete pipes with improved mechanical properties. Construction and Building Materials 37:841–50. doi:10.1016/j.conbuildmat.2012.07.082.
  • Lanas, J., and J. I. Alvarez-Galindo. 2003. Masonry repair lime-based mortars: Factors affecting the mechanical behavior. Cement and Concrete Research 33(11):1867–76. doi:10.1016/S0008-8846(03)00210-2.
  • Lanas, J., R. Sirera, and J. I. Alvarez. 2005. Compositional changes in lime-based mortars exposed to different environments. Thermochimica Acta 429(2):219–26. doi:10.1016/j.tca.2005.03.015.
  • Latifi, M. R., Ö. Biricik, and A. Mardani Aghabaglou. 2021. Effect of the addition of polypropylene fiber on concrete properties. Journal of Adhesion Science and Technology 36 (4): 1–25.
  • Malinowski, R. 1981. Ancient mortars and concretes, durability aspects. Mortars, cements and grouts used in conservation of historic buildings. Proceedings of the symposium, ICCROM, Rome, 341–50
  • Maltese, C., C. Pistolesi, A. Lolli, A. Bravo, T. Cerulli, and D. Salvioni. 2005. Combined effect of expansive and shrinkage reducing admixtures to obtain stable and durable mortars. Cement and Concrete Research 35(12):2244–51. doi:10.1016/j.cemconres.2004.11.021.
  • Mardani-Aghabaglou, A., and M. İlhan. 2018. Büzülme engelleyici katkıların su azaltıcı katkı varlığında harç karışımlarının basınç dayanımına, su emmesine ve kuruma-büzülmesine etkisi, [Effect of shrinkage reducing admixture on compressive strength, water absorption and drying-shrinkage of mortar mixture in the presence of water reducing admixture. Sakarya University Journal of Science 22(2):417–26. (in Turkish).
  • Mardani-Aghabaglou, A., S. Özen, and M. G. Altun. 2018. Durability performance and dimensional stability of polypropylene fiber reinforced concrete. Journal of Green Building 13(2):20–41. doi:10.3992/1943-4618.13.2.20.
  • Mardani-Aghabaglou, A., M. Ilhan, and S. Ozen. 2019. The effect of shrinkage reducing admixture and polypropylene fibers on drying shrinkage behaviour of concrete. Cement Wapno Beton 24(3):227–38.
  • Mardani-Aghabaglou, A., K. Karakuzu, V. Kobya, and D. Hatungimana. 2021. Durability performance and dimensional stability of road concrete containing dry-shake surface hardener admixture. Construction and Building Materials 274:121789. doi:10.1016/j.conbuildmat.2020.121789.
  • Moropoulou, A., A. Bakolas, and K. Bisbikou. 2000. Investigation of the technology of historic mortars. Journal of Cultural Heritage 1(1):45–58. doi:10.1016/S1296-2074(99)00118-1.
  • Navrátilová, E., and P. Rovnaníková. 2016. Pozzolanic properties of brick powders and their effect on the properties of modified lime mortars. Construction and Building Materials 120:530–39. doi:10.1016/j.conbuildmat.2016.05.062.
  • Nežerka, V., Z. Slížková, P. Tesárek, T. Plachý, D. Frankeová, and V. Petráňová. 2014. Comprehensive study on mechanical properties of lime-based pastes with additions of metakaolin and brick dust. Cement and Concrete Research 64:17–29. doi:10.1016/j.cemconres.2014.06.006.
  • Nmai, C. K., R. Tomita, F. Hondo, and J. Buffenbarger. 1998. Shrinkage-reducing admixtures. Concrete International 20(4):31-37.
  • Pachta, V., S. Triantafyllaki, and M. Stefanidou. 2018. Performance of lime-based mortars at elevated temperatures. Construction and Building Materials 189:576–84. doi:10.1016/j.conbuildmat.2018.09.027.
  • Pachta, V., E. C. Tsardaka, and M. Stefanidou. 2021. The role of flame retardants in cement mortars exposed at elevated temperatures. Construction and Building Materials 273:122029. doi:10.1016/j.conbuildmat.2020.122029.
  • Pérez-Nicolás, M., A. Duran, I. Navarro-Blasco, J. M. Fernández, R. Sirera, and J. I. Alvarez. 2016. Study on the effectiveness of PNS and LS superplasticizers in air lime-based mortars. Cement and Concrete Research 82:11–22. doi:10.1016/j.cemconres.2015.12.006.
  • Pozo-Antonio, J. S. 2015. Evolution of mechanical properties and drying shrinkage in lime-based and lime cement-based mortars with pure limestone aggregate. Construction and Building Materials 77:472–78. doi:10.1016/j.conbuildmat.2014.12.115.
  • Puertas, F., T. Amat, A. Fernandez-Jimenez, and T. Vazquez. 2003. Mechanical and durable behaviour of alkaline cement mortars reinforced with polypropylene fibres. Cement and Concrete Research 33(12):2031–36. doi:10.1016/S0008-8846(03)00222-9.
  • Pusat, S. E. 2002. Tarihi yapıların onarımında kullanılacak harç üretimi (Production of mortar for the restoration of historical buildings), Yıldız Technical University Master Thesis. (in Turkish)
  • Ramakrishna, G., and T. Sundararajan. 2005. Studies on the durability of natural fibres and the effect of corroded fibres on the strength of mortar. Cement and Concrete Composites 27(5):575–82. doi:10.1016/j.cemconcomp.2004.09.008.
  • Rosato, L., M. Stefanidou, G. Milazzo, F. Fernandez, P. Livreri, N. Muratore, and L. M. Terranova. 2017. Study and evaluation of nano-structured cellulose fibers as additive for restoration of historical mortars and plasters. Materials Today: Proceedings 4(7):6954–65.
  • Sánchez, J. A., J. Barrios, A. Barrios, and A. A. Agudo. 1997. The shrinkage in lime mortars. Materiales De Construcción 47(245):17–28. doi:10.3989/mc.1997.v47.i245.511.
  • Sant, G., B. Lothenbach, P. Juilland, G. Le Saout, J. Weiss, and K. Scrivener. 2011. The origin of early age expansions induced in cementitious materials containing shrinkage reducing admixtures. Cement and Concrete Research 41(3):218–29. doi:10.1016/j.cemconres.2010.12.004.
  • Santarelli, M. L., F. Sbardella, M. Zuena, J. Tirillò, and F. Sarasini. 2014. Basalt fiber reinforced natural hydraulic lime mortars: A potential bio-based material for restoration. Materials & Design 63:398–406. doi:10.1016/j.matdes.2014.06.041.
  • Seabra, M. P., H. Paiva, J. A. Labrincha, and V. M. Ferreira. 2009. Admixtures effect on fresh state properties of aerial lime based mortars. Construction and Building Materials 23(2):1147–53. doi:10.1016/j.conbuildmat.2008.06.008.
  • Shah, S. P., M. E. Karaguller, and M. Sarigaphuti. 1992. Effects of shrinkage-reducing admixtures on restrained shrinkage cracking of concrete. Materials Journal 89(3):289–95.
  • Silva, B., A. P. F. Pinto, A. Gomes, and A. Candeias. 2019. Fresh and hardened state behaviour of aerial lime mortars with superplasticizer. Construction and Building Materials 225:1127–39. doi:10.1016/j.conbuildmat.2019.07.275.
  • Soliman, A. M., and M. L. Nehdi. 2014. Effects of shrinkage reducing admixture and wollastonite microfiber on early-age behavior of ultra-high performance concrete. Cement and Concrete Composites 46:81–89. doi:10.1016/j.cemconcomp.2013.11.008.
  • Toledo Filho, R. D., and M. A. Sanjuan. 1999. Effect of low modulus sisal and polypropylene fibre on the free and restrained shrinkage of mortars at early age. Cement and Concrete Research 29(10):1597–604. doi:10.1016/S0008-8846(99)00136-2.
  • Toniolo, N., and A. R. Boccaccini. 2017. Fly ash-based geopolymers containing added silicate waste. A review. Ceramics International 43(17):14545–51. doi:10.1016/j.ceramint.2017.07.221.
  • Torraca, G. 2009. Lectures on materials science for architectural conservation. 54-61.
  • Wang, J. Y., K. S. Chia, J. Y. R. Liew, and M. H. Zhang. 2013. Flexural performance of fiber-reinforced ultra lightweight cement composites with low fiber content. Cement and Concrete Composites 43:39–47. doi:10.1016/j.cemconcomp.2013.06.006.
  • Watts, J. M. Jr., and M. E. Kaplan. 2001. Fire risk index for historic buildings. Fire Technology 37(2):167–80. doi:10.1023/A:1011649802894.
  • Wehbe, Y., and A. Ghahremaninezhad. 2017. Combined effect of shrinkage reducing admixtures (SRA) and superabsorbent polymers (SAP) on the autogenous shrinkage, hydration and properties of cementitious materials. Construction and Building Materials 138:151–62. doi:10.1016/j.conbuildmat.2016.12.206.
  • Weiss, W. J., B. B. Borischevsky, and S. P. Shah. 1999. The influence of a shrinkage reducing admixture on the early-age behavior of high performance concrete. Fifth International Symposium on the Utilization of High Strength/High Performance Concrete. Sandefjord, Norway, 2, 1418–28.
  • Yoo, D. Y., J. Kim, G. Zi, and Y. S. Yoon. 2015. Effect of shrinkage-reducing admixture on biaxial flexural behavior of ultra-high-performance fiber-reinforced concrete. Construction and Building Materials 89:67–75. doi:10.1016/j.conbuildmat.2015.04.040.
  • Zappia, G., C. Sabbioni, C. Riontino, G. Gobbi, and O. Favoni. 1998. Exposure tests of building materials in urban atmosphere. Science of the Total Environment 224(1–3):235–44. doi:10.1016/S0048-9697(98)00359-3.
  • Zhan, P. M., and Z. H. He. 2019. Application of shrinkage reducing admixture in concrete: A review. Construction and Building Materials 201:676–90. doi:10.1016/j.conbuildmat.2018.12.209.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.