Publication Cover
International Journal of Architectural Heritage
Conservation, Analysis, and Restoration
Volume 18, 2024 - Issue 1
139
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Seismic Behaviour of a 20th Century Heritage Structure Built of Welded Tuff Masonry and Timber Frames

ORCID Icon &
Pages 102-124 | Received 25 Apr 2022, Accepted 10 Aug 2022, Published online: 21 Aug 2022

References

  • Abira town hall. 2022. List of designated cultural properties in Abira Town. Accessed April 21, 2022. https://www.town.abira.lg.jp/kosodate/s-guide/shisetsu/1393
  • AIJ. 2006. AIJ standard for structural design of timber structures. Kyoto: Maruzen.
  • Aktaş, Y. D. 2017. Seismic resistance of traditional timber-frame hımış structures in Turkey: A brief overview. International Wood Products Journal 8 (sup1):21–28. doi:10.1080/20426445.2016.1273683.
  • Almeida, C., J. P. Guedes, A. Arêde, C. Q. Costa, and A. Costa. 2012. Physical characterization and compression tests of one leaf stone masonry walls. Construction and Building Materials 30:188–97. doi:10.1016/j.conbuildmat.2011.11.043.
  • Araújo, A. S., D. V. Oliveira, and P. B. Lourenço. 2014. Numerical study on the performance of improved masonry-to-timber connections in traditional masonry buildings. Engineering Structures 80:501–13. doi:10.1016/j.engstruct.2014.09.027.
  • Architectural Institute of Japan (AIJ), Hokkaido branch. 1994. Historic buildings in Otaru. Otaru: Otaru city board of education.
  • Borri, A., M. Corradi, G. Castori, and A. De Maria. 2015. A method for the analysis and classification of historic masonry. Bulletin of Earthquake Engineering 13 (9):2647–65. doi:10.1007/s10518-015-9731-4.
  • Borri, A., R. Sisti, M. Corradi, and C. Quintaliani. 2019. Reinforcement of Shear Walls with the Reticulatus method and CLT panels. In Reinforcement of Shear Walls with the Reticulatus method and CLT panels, 254–64. Ascoli Piceno, Italy: L'ingegneria sismica in Italia - XVIII convegno ANIDIS.
  • Cao, J., H. Xiong, and J. Chen. 2021. Mechanical performance of timber-concrete bolted connections under cyclic loading. In Structures, Vol. 34, 3464–77. Amsterdam, Netherlands: Elsevier.
  • Carvalho, E. P., and E. V. M. Carrasco. 2010. Influence of test specimen on experimental characterization of timber–concrete composite joints. Construction and Building Materials 24 (8):1313–22. doi:10.1016/j.conbuildmat.2009.12.036.
  • Ceccotti, A., P. Faccio, M. Nart, C. Sandhaas, and P. Simeone. 2006. Seismic behaviour of historic timber-frame buildings in the Italian Dolomites. In ICOMOS International Wood Committee—15th International Symposium Istanbul and Rize (Turkey), Istanbul, Turkey.
  • CEN. 2005a. Eurocode 6—Design of masonry structures. General rules for reinforced and unreinforced masonry structures. (EN 1996–1–1). Brussel, Belgium, European Committee for Standardization, 2005
  • CEN. 2005b. Eurocode 3—Design of steel structures. Design of joints (EN 1993–1–8). Brussel, Belgium, European Committee for Standardization, 2005
  • Chang, W. S., and M. F. Hsu. 2007. Rotational performance of traditional Nuki joints with gap II: The behavior of butted Nuki joint and its comparison with continuous Nuki joint. Journal of Wood Science 53 (5):401–07. doi:10.1007/s10086-007-0880-1.
  • Chang, W. S., J. Shanks, A. Kitamori, and K. Komatsu. 2009. The structural behaviour of timber joints subjected to bi‐axial bending. Earthquake Engineering & Structural Dynamics 38 (6):739–57. doi:10.1002/eqe.854.
  • Ching, F. D., M. M. Jarzombek, and V. Prakash. 2017. A global history of architecture. New York, United States: John Wiley & Sons.
  • Corradi, M., and A. Borri. 2018. A database of the structural behavior of masonry in shear. Bulletin of Earthquake Engineering 16 (9):3905–30. doi:10.1007/s10518-018-0328-6.
  • Crayssac, E., X. Song, Y. Wu, and K. Li 2018. Lateral performance of mortise-tenon jointed traditional timber frames with wood panel infill. Engineering Structures 161:223–30.
  • Czech technical standard (CSN). 2016. EN 338 Structural timber - Strength classes
  • Deniz, B. E., and T. Topal. 2021. A new durability assessment method of the tuffs used in some historical buildings of Cappadocia (Turkey). Environmental Earth Sciences 80 (7):1–32. doi:10.1007/s12665-021-09546-1.
  • Dutu, A., M. Niste, I. Spatarelu, D. I. Dima, and S. Kishiki. 2018. Seismic evaluation of Romanian traditional buildings with timber frame and mud masonry infills by in-plane static cyclic tests. Engineering Structures 167:655–70. doi:10.1016/j.engstruct.2018.02.062.
  • Dutu, A., H. Sakata, Y. Yamazaki, and T. Shindo. 2016. In-plane behavior of timber frames with masonry infills under static cyclic loading. Journal of Structural Engineering 142 (2):04015140. doi:10.1061/(ASCE)ST.1943-541X.0001405.
  • Engel, H. 2020. Measure and construction of the Japanese house. Vermont, United States: Tuttle Publishing.
  • Fazio, M. W., M. Moffett, and L. Wodehouse. 2019. Buildings across time: An introduction to world architecture. New York, United States: McGraw-Hill Education.
  • FEMA 356. 2000. Pre-standard and commentary for the seismic rehabilitation of buildings. Washington, D.C, United States: FEMA Publication.
  • Gattesco, N., and I. Boem. 2018. Numerical study on the reduction of the seismic vulnerability of historical industrial buildings with wide timber roofs. Procedia Structural Integrity 11:298–305. doi:10.1016/j.prostr.2018.11.039.
  • Germinario, L., and Á. Török. 2019. Variability of technical properties and durability in volcanic tuffs from the same quarry region–examples from Northern Hungary. Engineering Geology 262:105319. doi:10.1016/j.enggeo.2019.105319.
  • Guadagnuolo, M., M. Aurilio, A. Basile, and G. Faella. 2020. Modulus of elasticity and compressive strength of tuff masonry: Results of a wide set of flat-jack tests. Buildings 10 (5):84. doi:10.3390/buildings10050084.
  • Guerrini, G., N. Damiani, M. Miglietta, and F. Graziotti. 2021. Cyclic response of masonry piers retrofitted with timber frames and boards. Proceedings of the Institution of Civil Engineers-Structures and Buildings 174 (5):372–88. doi:10.1680/jstbu.19.00134.
  • Heap, M. J., J. I. Farquharson, A. R. Kushnir, Y. Lavallée, P. Baud, H. A. Gilg, and T. Reuschlé. 2018. The influence of water on the strength of Neapolitan Yellow Tuff, the most widely used building stone in Naples (Italy). Bulletin of Volcanology 80 (6):1–15. doi:10.1007/s00445-018-1225-1.
  • Hirose, W., Y. Kase, G. Kawakami, H. Koyasu, and A. Urabe 2018. Preliminary report of surface deformation and damages by strong ground motions of the 2018 Hokkaido Eastern Iburi Earthquake. Report of Hokkaido Research Center of Geology 90:15–32.
  • Hosoya, T., I. Towhata, and M. Ikeda. 2021, September 26-29. Reconnaissance survey on earthquake-induced failures of ground composed of volcanic materials in Hokkaido, Japan, during the 2018 Hokkaido Eastern Iburi earthquake of Mw= 6.6. 6th International Conference on Geotechnical and Geophysical Site Characterization, Budapest, Hungary, 8.
  • International Institute of Seismology and Earthquake Engineering (IISEE). 2022. Seismic design of building foundation. Accessed April 21, 2022. https://iisee.kenken.go.jp/net/seismic_design_code/japan/japan.htm
  • International Organization for Standardization (ISO). 2019a. ISO 3129: 2019Wood — Sampling methods and general requirements for physical and mechanical testing of small clear wood specimens. Geneva: ISO central secretariat.
  • ISO. 2014a. ISO 13061-3:2014 Physical and mechanical properties of wood — Test methods for small clear wood specimens — Part 3: Determination of ultimate strength in static bending. Geneva: ISO central secretariat.
  • ISO. 2014b. ISO 13061-4:2014 Physical and mechanical properties of wood — Test methods for small clear wood specimens — Part 4: Determination of modulus of elasticity in static bending. Geneva: ISO central secretariat.
  • ISO. 2019b. ISO 1920-3:2019 Testing of concrete — Part 3: Making and curing test specimens. Geneva: ISO central secretariat.
  • ISO. 2019c. ISO 6892-1:2019(en) Metallic materials — Tensile testing — Part 1: Method of test at room temperature. Geneva: ISO central secretariat.
  • ISO. 2020a. 13061-5:2020 Physical and mechanical properties of wood — Test methods for small clear wood specimens — Part 5: Determination of strength in compression perpendicular to grain. Geneva: ISO central secretariat.
  • ISO. 2020b. 1920-4:2020 Testing of concrete — Part 4: Strength of hardened concrete (Geneva: ISO central secretaria).
  • Italian Ministry for Cultural Heritage and Activities (IMCHA). 2011. Guidelines for evaluation and mitigation of seismic risk to cultural heritage. Rome: Gangemi.
  • Iuorio, O., J. A. Dauda, and P. B. Lourenço. 2021. Experimental evaluation of out-of-plane strength of masonry walls retrofitted with oriented strand board. Construction and Building Materials 269:121358. doi:10.1016/j.conbuildmat.2020.121358.
  • Japan Meteorological Agency (JMA). 2019. Post earthquake damage survey, 2018 Iburi earthquake. Accessed April 21,2022 https://www.jma.go.jp/jma/kishou/books/saigaiji/saigaiji_201901.pdf
  • Japan National Trust. 1979. Otaru canal and stone masonry warehouses. Tokyo: Hoei publishing.
  • Japanese Association for Conservation of Architectural Monuments. 1987. Restoration report, Japan mail steamer office. Kyoto: Shinyosha.
  • Kayen, R., B. Wham, A. R. Grant, M. Atsushi, D. Anderson, P. Zimmaro, P. Wang, Y. Tsai, J. Bachhuber, C. Madugo, et al. 2019. Seismological, geological, and geotechnical engineering aspects of the 2018 MW 6.6 Hokkaido eastern Iburi earthquake. California, United States: Geotechnical Extreme Events Reconnaissance Association (GEER).
  • Khorsandnia, N., H. R. Valipour, and K. Crews. 2012. Experimental and analytical investigation of short-term behaviour of LVL–concrete composite connections and beams. Construction and Building Materials 37:229–38. doi:10.1016/j.conbuildmat.2012.07.022.
  • Kržan, M., S. Gostič, S. Cattari, and V. Bosiljkov. 2015. Acquiring reference parameters of masonry for the structural performance analysis of historical buildings. Bulletin of Earthquake Engineering 13 (1):203–36. doi:10.1007/s10518-014-9686-x.
  • Langenbach, R. 2007. From “Opus Craticium” to the “Chicago Frame”: Earthquake-resistant traditional construction. International Journal of Architectural Heritage 1 (1):29–59. doi:10.1080/15583050601125998.
  • Li, S., Z. Zhou, H. Luo, G. Milani, and D. Abruzzese. 2020. Behavior of traditional Chinese mortise-tenon joints: Experimental and numerical insight for coupled vertical and reversed cyclic horizontal loads. Journal of Building Engineering 30:101257. doi:10.1016/j.jobe.2020.101257.
  • Longarini, N., P. Crespi, and M. Scamardo. 2020. Numerical approaches for cross-laminated timber roof structure optimization in seismic retrofitting of a historical masonry church. Bulletin of Earthquake Engineering 18 (2):487–512. doi:10.1007/s10518-019-00661-w.
  • Lourenço, P. B., M. P. Ciocci, F. Greco, G. Karanikoloudis, C. Cancino, D. Torrealva, and K. Wong. 2019. Traditional techniques for the rehabilitation and protection of historic earthen structures: The seismic retrofitting project. International Journal of Architectural Heritage 13 (1):15–32. doi:10.1080/15583058.2018.1497232.
  • Martínez-Martínez, J., A. Pola, L. García-Sánchez, A. G. Reyes, O. L. S. Osorio, V. J. L. Macías, and J. Robles-Camacho. 2018. Building stones used in the architectural heritage of Morelia (México): Quarries location, rock durability and stone compatibility in the monument. Environmental Earth Sciences 77 (5):1–16. doi:10.1007/s12665-018-7340-7.
  • Meireles, H., R. Bento, S. Cattari, and S. Lagomarsino. 2012. A hysteretic model for “frontal” walls in Pombalino buildings. Bulletin of Earthquake Engineering 10 (5):1481–502. doi:10.1007/s10518-012-9360-0.
  • Miglietta, M., N. Damiani, G. Guerrini, and F. Graziotti. 2021. Full‐scale shake‐table tests on two unreinforced masonry cavity‐wall buildings: Effect of an innovative timber retrofit. Bulletin of Earthquake Engineering 19 (6):2561–96. doi:10.1007/s10518-021-01057-5.
  • Moreira, S., L. F. Ramos, D. V. Oliveira, and P. B. Lourenço. 2014. Experimental behavior of masonry wall-to-timber elements connections strengthened with injection anchors. Engineering Structures 81:98–109. doi:10.1016/j.engstruct.2014.09.034.
  • Nakumura, Y. 2008, October 12–17. On the H/V spectrum. The 14th World Conference on Earthquake Engineering, Beijing, China, 10.
  • National Research Institute for Earth Science and Disaster Resilience (NIED). 2019. NIED K-NET, KiK-net, National Research Institute for Earth Science and Disaster Resilience. Accessed April 21, 2022. http://www.kyoshin.bosai.go.jp/kyoshin/docs/kyoshin_index.html
  • Nishi, K., and K. Hozumi. 1985. What Is Japanese Architecture? Tokyo, Japan: Kodansha International. (Horton H Trans.).
  • Otaru city council. 2022. Otaru-shi designated historic building. Accessed April 21, 2022. https://www.city.otaru.lg.jp.e.go.hp.transer.com/categories/bunya/gakushu_sports_bunka/rekiken/
  • PIET 70. 1971. Obras de fábrica. Prescripciones del Instituto Eduardo Torroja. Consejo Superior de Investigaciones Científicas Madrid: Instituto Eduardo Torroja.
  • Poletti, E., and G. Vasconcelos. 2015. Seismic behaviour of traditional timber frame walls: Experimental results on unreinforced walls. Bulletin of Earthquake Engineering 13 (3):885–916. doi:10.1007/s10518-014-9650-9.
  • Public Works Research Institute. 2008. National geotechnical information search engine. Accessed July 14, 2022, https://www.kunijiban.pwri.go.jp/viewer/
  • Qu, Z., X. Fu, S. Kishiki, and Y. Cui. 2020. Behavior of masonry infilled Chuandou timber frames subjected to in-plane cyclic loading. Engineering Structures 211:110449. doi:10.1016/j.engstruct.2020.110449.
  • Riccadonna, D., I. Giongo, G. Schiro, E. Rizzi, and M. A. Parisi. 2019. Experimental shear testing of timber-masonry dry connections for the seismic retrofit of unreinforced masonry shear walls. Construction and Building Materials 211:52–72. doi:10.1016/j.conbuildmat.2019.03.145.
  • Shimadzu. 2022b. Universal /Tensile Testing Machine. Accessed April 21, 2022. https://www.shimadzu.com/an/products/materials-testing/uni-ttm/index.html
  • Shimadzu Corporation. 2022a. Autograph AGS-X Series. Accessed April 21, 2022. https://www.shimadzu.com/an/products/materials-testing/uni-ttm/autograph-ags-x-series/index.html
  • Soil Science Division Staff (SSDS). 2017. Examination and description of soil profiles. In Soil survey manual, USDA Handbook 18, ed. C. Ditzler, K. Scheffe, and H. C. Monger, 83–234, Washington, D.C.: Government Printing Office.
  • Taazount, M., S. Amziane, and D. Molard. 2013. Tangential behavior of nailed composite timber–concrete floor structures. Construction and Building Materials 40:506–13. doi:10.1016/j.conbuildmat.2012.09.092.
  • TNODIAN. 2021. DIANA Documentation Release 10; DIANA FEA. Delft, The Netherlands.
  • Tokyo Sokushin. 2022. Tokyo Sokushin. Accessed April 21, 2022. http://www.to-soku.co.jp/en/
  • Torrealva, D. E., and E. F. Vicente. 2014 Experimental behaviour of traditional seismic retrofitting techniques in earthen buildings in Peru. In Proc., 9th international conference on structural analysis of historical constructions (SAHC2014), Mexico City, Mexico.
  • Valluzzi, M. R., E. Saler, A. Vignato, M. Salvalaggio, G. Croatto, G. Dorigatti, and U. Turrini. 2021. Nested buildings: an innovative strategy for the integrated seismic and energy retrofit of existing masonry buildings with CLT panels. Sustainability 13 (3):1188. doi:10.3390/su13031188.
  • Vanin, F., D. Zaganelli, A. Penna, and K. Beyer. 2017. Estimates for the stiffness, strength and drift capacity of stone masonry walls based on 123 quasi-static cyclic tests reported in the literature. Bulletin of Earthquake Engineering 15 (12):5435–79. doi:10.1007/s10518-017-0188-5.
  • Vecchio, F. J., and M. P. Collins. 1986. The modified compression-field theory for reinforced concrete elements subjected to shear. ACI Journal 83 (2):219–31.
  • Vieux-Champagne, F., Y. Sieffert, S. Grange, A. Polastri, A. Ceccotti, and L. Daudeville. 2014. Experimental analysis of seismic resistance of timber-framed structures with stones and earth infill. Engineering Structures 69:102–15. doi:10.1016/j.engstruct.2014.02.020.
  • Vintzileou, E. 2008. Effect of timber ties on the behavior of historic masonry. Journal of Structural Engineering 134 (6):961–72. doi:10.1061/(ASCE)0733-9445(2008)134:6(961).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.