221
Views
3
CrossRef citations to date
0
Altmetric
Research Article

A Geotechnical Analysis to Assess the Effect of Slow-Moving Landslides on Historic Masonry Churches

, , , &
Pages 3-22 | Received 30 Mar 2022, Accepted 11 Sep 2022, Published online: 25 Sep 2022

References

  • Arpal. 2020. Banca dati ReMoVer - Commento generale all’attività di monitoraggio. Accessed September 20, 2021. https://srvcarto.regione.liguria.it/dtuff/img/Remover/Com-menti_Siti/GE026_commento_tot.pdf.
  • Autorità di bacino distrettuale del fiume Po. 2017. Piano Stralcio per l’Assetto Idrogeologico. Atlante dei Rischi Idraulici e Idrogeologici (Atlas of Hydraulic and Hydrogeological Risks). Accessed October 25, 2018. http://www.pai.adbpo.it/.
  • Ayensa A., B. Beltrán, E. Ibarz, and L. Gracia. 2015. Application of a new methodology based on Eurocodes and finite element simulation to the assessment of a romanesque church. Construction and Building Materials 101:287–297. doi: 10.1016/j.conbuildmat.2015.10.115.
  • Boscardin, M. D., and E. G. Cording. 1989. Building response to excavation induced settlement. Journal of Geotechnical Engineering 115:1–21. doi:10.1061/(ASCE)0733-9410(1989)115:1(1).
  • Burd, H. J., G. T. Houlsby, C. E. Augarde, and G. Liu. 2000. Modelling tunnelling-induced settlement of masonry buildings. Proceedings of the Institution of Civil Engineers - Geotechnical Engineering 143 (1):17–29. doi:10.1680/geng.2000.143.1.17.
  • Burland, J. B., B. B. Broms, and V. F. B. De Mello. 1977. Behaviour of foundations and structures. Proceedings of 9th International Conference Soil Mechanics and Foundation Engineering (ICSMFE), Tokyo, vol. 2, 495–546, Tokyo, Japan: Japanese Geotechnical Society.
  • Burland, J. B., and C. P. Wroth. 1974. Settlements on buildings and associated damage. Proceedings of Conference on Settlement of structures, Cambridge, 611–54. London, UK: Pentech Press.
  • Calabresi, G. 2013. The role of geotechnical engineers in saving monuments and historic sites. Kerisel lecture. Proceedings of the 18th international conference on soil mechanics and geotechnical engineering. Eds. Delage, P., Desrues, J., Frank, R., Puech, A., Schlosser, F. (Paris, France: Presses des Ponts, pp. 71–83.
  • Cambiaggi, L. 2020. Damage assessment of churches exposed to slope displacements in slide areas. PhD diss., University of Genoa.
  • Cambiaggi, L., and R. Berardi. 2019. Investigation on the damages induced by slope movements on historic buildings: The case of San Nicolò di Capodimonte church in Liguria. Proceedings of the XVII European Conference on Soil Mechanics and Geotechnical Engineering (ECSMGE 2019) Geotechnical Engineering foundation of the future, Reykjavik, Iceland. doi:10.32075/17ECSMGE-2019-0180.
  • Cambiaggi, L., C. Ferrero, B. Riccardo, R. Vecchiattini, and C. Calderini. 2021. Effect of slow-moving landslides on churches in the Liguria Region: A geotechnical approach. In SAHC 2021: 12th international conference on structural anal-ysis of historical constructions; Online event, 29 September-1 October 2021, ed. P. Roca, L. Pelà, and C. Molins. Cornellà de Llobregat: Artes Gráficas Torres S.L, 1074–1085.
  • Canuti, C., S. Carbonari, A. Dall’Asta, L. Dezi, F. Gara, G. Leoni, M. Morici, E. Petrucci, A. Prota, and A. Zona. 2019. Post-earthquake damage and vulnerability assessment of Churches in the Marche Region Struck by the 2016 Central Italy seismic sequence. International Journal of Architectural Heritage 15(7): 1000–1021.
  • Cattari, S., E. Curti, S. Giovinazzi, S. Lagomarsino, S. Parodi, and A. Penna. 2004. A mechanical model for the vulnerability assessment and damage scenario of masonry buildings at urban scale. Proceedings of the 11th Italian conference on earthquake engineering, Genoa, Italy.
  • Cavaciocchi, P., C. Lastrico, A. Molinari, G. Pesce, and S. Soppa. 2009. Studi sull’antica Chiesa di San Nicolò di Capodimonte a Camogli. Boves: Tipografia Bovesana.
  • Cigna, F., V. Liguori, C. Del Ventisette, and N. Casagli. 2013. Landslide impacts on Agrigento’s Cathedral imaged with radar interferometry. In Landslide science and practice, ed. C. Margottini, P. Canuti, and K. Sassa, 475–81. Berlin, Heidelberg: Springer.
  • Cruden, D. M., and D. J. Varnes. 1996. Landslide types and processes. Landslides: investigation and mitigation, Transportation Research Board, Special Report 247, 36–75. National Academy of Sciences, Washington, D.C.
  • D'Amato, M., R. Gigliotti, and R. Laguardia. 2019. Comparative Seismic Assessment of Ancient Masonry Churches. Frontiers in Built Environment 5. doi: 10.3389/fbuil.2019.00056.
  • D’Amato, M., M. Laterza, and D. Diaz Fuentes. 2020. Simplified Seismic Analyses of Ancient Churches in Matera’s Landscape. International Journal of Architectural Heritage 14(1):119–138. doi: 10.1080/15583058.2018.1511000.
  • da Porto, F., B. Silva, C. Costa, and C. Modena. 2012. Macro-scale analysis of damage to churches after earthquake in Abruzzo (Italy) on April 6, 2009. Journal of Earthquake Engineering 16 (6):739–58. doi:10.1080/13632469.2012.685207.
  • De Matteis, G., E. Criber, and G. Brando. 2016. Damage probability matrices for three-nave masonry churches in Abruzzi after the 2009 L’Aquila earthquake. International Journal of Architectural Heritage 10 (2–3):120–45.
  • Doglioni, F., A. Moretti, and V. Petrini. 1994. Le chiese e il terremoto. National Research Council. Trieste, IT: Lint Press (in Italian).
  • Drougkas, A., E. Verstrynge, P. Szekér, G. Heirman, L. Bejarano-Urrego, G. Giardina and K. Van Balen. 2020). Numerical Modeling of a Church Nave Wall Subjected to Differential Settlements: Soil-Structure Interaction, Time-Dependence and Sensitivity Analysis. International Journal of Architectural Heritage 14(8): 1221–1238. doi: 10.1080/15583058.2019.1602682
  • Federici, P. R., M. Capitani, A. Chelli, N. Del Seppia, and A. Serani. 2004. Atlante dei Centri Abitati Instabili della Liguria. II. Provincia di Genova (Atlas of the Unstable Inhabited Centres of Liguria. II. Genova province), Regione Liguria.
  • Ferlisi, S., G. Gullà, G. Nicodemo, and D. Peduto. 2019. A multi-scale methodological approach for slow-moving landslide risk mitigation in urban areas, southern Italy. Euro-Mediterranean Journal for Environmental Integration 4 (20). doi: 10.1007/s41207-019-0110-4.
  • Ferlisi, S., F. Nicodemo, D. Peduto, C. Negulescu, and G. Grandjean. 2020. Deterministic and probabilistic analyses of the 3D response of masonry buildings to imposed settlement troughs. Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards 14 (4):260–79. doi:10.1080/17499518.2019.1658880.
  • Ferrero, C., L. Cambiaggi, A. Fenialdi, P. Roca, R. Vecchiattini, and C. Calderini. 2021b. Slow-moving landslide damage assessment of historic masonry churches: Some case-studies in Italy. In SAHC 2021: 12th international conference on structural analysis of historical constructions; Online event, 29 September - 1 October 2021, ed. P. Roca, L. Pelà, and C. Molins. Cornellà de Llobregat: Artes Gráficas Torres S.L., 1256–1267.
  • Ferrero, C., L. Cambiaggi, R. Vecchiattini, and C. Calderini. 2021a. Damage assessment of historic masonry churches exposed to slow-moving. International Journal of Architectural Heritage 15 (8):1170–95. doi:10.1080/15583058.2020.1799259.
  • Formisano, A., G. Ciccone, A. Mele. 2017. Large scale seismic vulnerability and risk evaluation of a masonry churches sample in the historical centre of Naples. 13th International Conference of Computational Methods in Sciences and Engineering (ICCMSE 2017). Thessaloniki, April 21-25, 2017.
  • Geoportale Regione Liguria. 2020. Visualizzatore Cartografico. Accessed January 20, 2020. https://geoportal.regione.liguria.it.
  • Giardina, G., M. J. DeJong, and R. J. Mair. 2015b. Interaction between surface structures and tunnelling in sand: Centrifuge and computational modelling. Tunnelling and Underground Space Technology 50:465–78. doi:10.1016/j.tust.2015.07.016.
  • Giardina, G., M. A. N. Hendriks, and J. G. Rots. 2015a. Sensitivity study on tunnelling induced damage to a masonry façade. Engineering Structures 89:111–29. doi:10.1016/j.engstruct.2015.01.042.
  • Gullà, G., G. Nicodemo, S. Ferlisi, L. Borrelli, and D. Peduto. 2021. Small-scale analysis to rank municipalities requiring slow-moving landslide risk mitigation measures: The case study of the Calabria region (southern Italy). Geoenvironmental Disasters 8 (31). doi: 10.1186/s40677-021-00202-1.
  • Lagomarsino, S. 2012. Damage assessment of churches after L’Aquila earthquake (2009). Bulletin of Earthquake Engineering 10 (1):73–92. doi:10.1007/s10518-011-9307-x.
  • Lagomarsino, S., and S. Giovinazzi. 2006. Macroseismic and mechanical models for the vulnerability and damage assessment of current buildings. Journal of Earthquake Engineering 4:415–43. doi:10.1007/s10518-006-9024-z.
  • Lagomarsino, S., and S. Podestà. 2004a. Seismic vulnerability of ancient churches. Part 1: Damage assessment and emergency planning. Earthquake Spectra 20 (2):377–94. doi:10.1193/1.1737735.
  • Lagomarsino, S., and S. Podestà. 2004b. Seismic vulnerability of ancient churches. Part 2: Statistical analysis of surveyed data and methods for risk analysis. Earthquake Spectra 20 (2):395–412. doi:10.1193/1.1737736.
  • Lagomarsino, S., and S. Podestà. 2004c. Damage and vulnerability assessment of churches after the 2002 Molise, Italy, earthquake. Earthquake Spectra 20 (S1):S271–S283. doi:10.1193/1.1767161.
  • Lancellotta, R. 2013. La torre Ghirlandina: Una storia di interazione struttura-terreno. XI Croce Lecture. Rivista Italiana di Geotecnica 47 (2):7–37. (In Italian).
  • Margottini, C., and D. Spizzichino. 2014. The management of cultural heritage in sites prone to natural hazard. Mem. Descr. Carta. Geol. d’It XCVI 415–30.
  • Margottini, C., D. Spizzichino, and A. Sonnessa. 2013. Landslide risk and monitoring system for conservation of Vardzia monastery, Georgia. In Geotechnical engineering for the preservation of monuments and historic sites, ed. E. Bilotta, A. Flora, S. Lirer, and C. Viggiani, 549–58. London, UK: CRC Press (Taylor & Francis Group).
  • Mavrouli, O., S. Fotopoulou, K. Pitilakis, G. Zuccaro, J. Corominas, A. Santo, F. Cacace, D. De Gregorio, G. Di Crescenzo, E. Foerster, et al. 2014. Vulnerability assessment for reinforced concrete buildings exposed to landslides. Bulletin of Engineering Geology and the Environment 73:265–89.
  • Negulescu, C., and E. Foerster. 2010. Parametric studies and quantitative assessment of the vulnerability of a RC frame building exposed to differential settlements. Natural Hazards and Earth System Science 10 (9):1781–92. doi:10.5194/nhess-10-1781-2010.
  • Nicodemo, G. 2017. Vulnerability analysis of buildings in areas affected by slow-moving landslides and subsidence phenomena. PhD dissertation, University of Salerno.
  • Nicodemo, G., S. Ferlisi, D. Peduto, L. Aceto, and G. Gullà. 2020. Damage to masonry buildings interacting with slow-moving landslides: A numerical analysis. In Geotechnical research for land protection and development. CNRIG 2019. Lecture notes in Civil Engineering, ed. F. Calvetti, F. Cotecchia, A. Galli, and C. Jommi, vol. 40, 52–61. Cham: Springer. doi:10.1007/978-3-030-21359-6_6.
  • Palmisano, F., C. Vitone, and F. Cotecchia. 2016. Landslide damage assessment at the intermediate to small scale. In Landslides and engineered slopes experience, theory and practice, ed. S. Aversa, L. Cascini, and C. Scavia, Vol. 1, pp. 1549–57. London: CRC Press.
  • Palmisano, F., C. Vitone, and F. Cotecchia. 2018. Assessment of landslide damage to buildings at the urban scale. Journal of Performance of Constructed Facilities 32 (4). https://ascelibrary.org/doi/10.1061/%28ASCE%29CF.1943-5509.0001201.
  • Peduto, D., S. Ferlisi, G. Nicodemo, D. Reale, G. Pisciotta, and G. Gullà. 2017. Empirical fragility and vulnerability curves for buildings exposed to slow-moving landslides at medium and large scales. Landslides 14:1993–2007. doi:10.1007/s10346-017-0826-7.
  • Peduto, D., G. Nicodemo, M. Caraffa, and G. Gullà. 2018. Quantitative analysis of consequences to masonry buildings interacting with slow-moving landslide mechanisms: A case study. Landslides 15:2017–30. doi:10.1007/s10346-018-1014-0.
  • Peduto, D., G. Pisciotta, G. Nicodemo, L. Arena, S. Ferlisi, G. Gullà, L. Borrelli, G. Fornaro, and D. Reale. 2016. A procedure for the analysis of building vulnerability to slow-moving landslides. Proceedings of 1st IMEKO TC4 International Workshop on Metrology for Geotechnics, 248–54. Benevento, Italy, March 17–18.
  • Penna, A., C. Calderini, L. Sorrentino, C. F. Carocci, E. Cescatti, R. Sisti, A. Borri, C. Modena, and A. Prota. 2019. Damage to churches in the 2016 central Italy earthquakes. Bulletin of Earthquake Engineering 17 (10):5763–90. doi:10.1007/s10518-019-00594-4.
  • Pesce, G. L., and Q. Gianluca. 2009. Radiocarbon dating of Lumps from Aerial Lime Mortars and Plasters: Methodological issues and results from San Nicolò of Capodimonte Church (Camogli, Genoa, Italy). Radiocarbon 51 (2):867–72. doi:10.1017/S0033822200056174.
  • Piano di Bacino Stralcio per l’Assetto Idrogeologico, Regione Liguria. 2017. Carte della Suscettività al Dissesto [Landslide Susceptibility Maps]. Accessed October 25, 2018. http://www.pianidibacino.ambienteinliguria.it/.
  • Piano Stralcio per l’Assetto Idrogeologico, Autorità di bacino distrettuale del fiume Po. 2017. Atlante dei Rischi Idraulici e Idrogeologici [Atlas of hydraulic and hydrogeological risks]. Accessed October 25, 2018. http://www.pai.adbpo.it/.
  • Pitilakis, K. D., and S. D. Fotopoulou. 2015. Vulnerability assessment of buildings exposed to co-seismic permanent slope displacements. Proceedings of the XVI, European Conference on Soil Mechanics and Geotechnical Engineering (ECSMGE) – Geotechnical Engineering for Infrastructure and Development. ice Publishing, pp. 151–73.
  • PLAXIS 2D. 2019. Tutorial manual 2019.
  • Podestà, S., A. Brignola, E. Curti, S. Parodi, and A. Lemme. 2010. Damage assessment and seismic vulnerability of churches: The Abruzzo earthquake. Ingegneria Sismica 2 (1):21–35 (in Italian).
  • Regione Liguria. 2017. Piano di Bacino Stralcio per l’Assetto Idrogeologico. Carte della Suscettività al Dissesto (Landslide Susceptibility Maps). Accessed October 25, 2018. http://www.pianidibacino.ambienteinliguria.it/.
  • Rocscience Inc. 2002. Slide. 2D limit equilibrium slope stability for soil and rock slopes. User’s Guide.
  • Sacco, G. L. S., C. Ferrero, C. Calderini, C. Battini, and R. Vecchiattini. 2022. Effect of slow-moving landslides on a vaulted masonry building: The case of San Carlo Borromeo church in Cassingheno (Genova). In Geotechnical engineering for the preservation of monuments and historic sites III, ed. R. Lancellotta, C. Viggiani, F. De Silva, and L. Mele, pp. 607–618. London: CRC Press/Balkema.
  • Saloustros, S. L. Pelà, P. Roca, and J.Portal. 2015. Numerical analysis of structural damage in the church of the Poblet Monastery. Engineering Failure Analysis 48:41–61. 10.1016/j.engfailanal.2014.10.015
  • Sánchez, A. R., R. Meli, and M. M. Chávez. 2016. Structural Monitoring of the Mexico City Cathedral (1990-2014). International Journal of Architectural Heritage 10 (2–3):254–268. doi: 10.1080/15583058.2015.1113332.
  • Sauvageon, D. 2017. Metodologia di studio per l’analisi degli effetti indotti da movimenti di versante sul costruito storico: il caso di San Nicolò di Capodimonte a Camogli. Master Thesis, University of Genoa (in Italian).
  • Soccodato, F. M., E. Martini, L. Tortoioli, and A. M. Mazzi. 2013. The preservation of historical, archaeological and artistic heritage of Orvieto: An interdisciplinary project. In Geotechnical engineering for the preservation of monuments and historic sites, ed. E. Bilotta, A. Flora, S. Lirer, and C. Viggiani, 683–96. London, UK: CRC Press (Taylor & Francis Group).
  • Son, M., and E. J. Cording. 2005. Estimation of building damage due to excavation -induced ground movements. Journal of Geotechnical and Geoenvironmetal Engineering 131 (2):162–77. doi:10.1061/(ASCE)1090-0241(2005)131:2(162).
  • Son, M., and J. Cording. 2007. Evaluation of building stiffness for building response analysis to excavation-induced ground movements. Journal of Geotechnical and Geoenvironmental Engineering 133 (8):995–1002. doi:10.1061/(ASCE)1090-0241(2007)133:8(995).
  • Spizzichino, D., C. Margottini, and L. M. Puzzilli. 2012. Landslide risk assessment and management in the archaeological site of Machu Picchu (Peru). In Geotechnical engineering for the preservation of monuments and historic sites, ed. E. Bilotta, A. Flora, S. Lirer, and C. Viggiani, 697–707. London, UK: CRC Press (Taylor & Francis Group).
  • Taliercio, A, and L. Binda. 2007. The Basilica of San Vitale in Ravenna: Investigation on the current structural faults and their mid-term evolution. Journal of Cultural Heritage 8(2):99–118. doi: 10.1016/j.culher.2006.09.005.
  • Uzielli, M., F. Nadim, S. Lacasse, and A. M. Kaynia. 2008. A conceptual framework for quantitative estimation of physical vulnerability to landslides. Engineering Geology 102 (3–4):251–56. doi:10.1016/j.enggeo.2008.03.011.
  • Valente, M, and G. Milani. 2019. Damage survey, simplified assessment, and advanced seismic analyses of two masonry churches after the 2012 Emilia earthquake. International Journal of Architectural Heritage 13(6):901–924. doi: 10.1080/15583058.2018.1492646

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.