Publication Cover
International Journal of Architectural Heritage
Conservation, Analysis, and Restoration
Volume 18, 2024 - Issue 1
151
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Study on the thermal stability and degradation kinetics of the historical wood: restoration residues collected from Chinese heritage buildings

ORCID Icon, , &
Pages 164-176 | Received 14 Jul 2022, Accepted 20 Sep 2022, Published online: 05 Dec 2022

References

  • Ahu, G. D., S. Ta, and Y. Yuda. 2011. Co-firing of biomass with coals. Energy Conversion & Management 103 (3):925–33. doi:10.1007/s10973-010-1126-9.
  • Andrés, C. S., T. Nestor, C. C. P. Paulo, and I. Y. Marıá. 2010. Thermal analysis of the combustion of charcoals from Eucalyptus dunnii obtained at different pyrolysis temperatures. Journal of Thermal Analysis and Calorimetry 100 (3):1051–54. doi:10.1007/s10973-010-0746-4.
  • Andrés, A. C., N. Zobel, A. Berger, and F. Behrendt. 2012. Smouldering of pine wood: Kinetics and reaction heats. Combustion & Flame 159 (4):1708–19. doi:10.1016/j.combustflame.
  • Azizi, K., M. K. Moraveji, and H. A. Najafabadi. 2017. Characteristics and kinetics study of simultaneous pyrolysis of microalgae chlorella vulgaris, wood and polypropylene through TGA. Bioresource Technology 243:481–91. doi:10.1016/j.biortech.2017.06.155.
  • Babrauskas, V., and R. D. Peacock. 1992. Heat release rate: The single most important variable in fire hazard. Fire Safety Journal 18 (3):255–72. doi:10.1016/0379-7112(92)90019-9.
  • Bilbao, R., J. F. Mastral, M. E. Aldea, and J. Ceamanos. 1997. Kinetic study for the thermal decomposition of cellulose and pine sawdust in an air atmosphere. Journal of Analytical & Applied Pyrolysis 39 (1):53–64. doi:10.1016/S0165-2370(96)00957-6.
  • Blasi, D. C. 2008. Modelling chemical and physical processes of wood and biomass pyrolysis. Progress in Energy and Combustion Science 34 (1):47–90. doi:10.1016/j.pecs.2006.12.001.
  • Broström, M., A. Nordin, L. Pommer, C. Branca, and C. Di Blasi. 2012. Influence of torrefaction on the devolatilization and oxidation kinetics of wood. Journal of Analytical & Applied Pyrolysis 96:100–09. doi:10.1016/j.jaap.2012.03.011.
  • Cavallaro, G., A. A. Gallitto, L. Lisuzzo, and G. Lazzara. 2019. Comparative study of historical wood from XIX century by thermogravimetry coupled with FTIR spectroscopy. Cellulose 26 (16):8853–65. doi:10.1007/s10570-019-02688-3.
  • Chien, Y. C., T. C. Yang, K. C. Hung, C. C. Li, J. W. Xu, and J. H. Wu. 2018. Effects of heat treatment on the chemical compositions and thermal decomposition kinetics of Japanese cedar and beech wood. Polymer Degradation & Stability 158:220–27. doi:10.1016/j.polymdegradstab.2018.11.003.
  • Coats, A. W., and J. P. Redfern. 1964. Redfern. Kinetic parameters from thermogravimetric data. Nature 201 (4914):68–69. doi:10.1038/201068a0.
  • Conesa, J. A., and A. Domene. 2011. Biomass pyrolysis and combustion kinetics through n-th-order parallel reactions. Thermochimica Acta 523 (1–2):176–81. doi:10.1016/j.tca.2011.05.021.
  • Cordero, T., J. M. Rodríguez-Maroto, J. Rodríguez-Mirasol, and J. J. Rodríguez. 1990. On the kinetics of thermal decomposition of wood and wood components. Thermochimica Acta 164:135–44. doi:10.1016/0040-6031(90)80430-7.
  • Criado, J. M., J. Málek, and A. Ortega. 1989. Applicability of the master plots in kinetic analysis of non-isothermal data. Thermochimica Acta 147 (2):377–85. doi:10.1016/0040-6031(89)85192-5.
  • Ding, Y., O. A. Ezekoye, S. Lu, C. Wang, and R. Zhou. 2017. Comparative pyrolysis behaviors and reaction mechanisms of hardwood and softwood. Energy Conversion & Management 132:102–09. doi:10.1016/j.enconman.2016.11.016.
  • Donato, D. I., G. Lazzara, and S. Milioto. 2010. Thermogravimetric analysis-A tool to evaluate the ability of mixtures in consolidating waterlogged archaeological wood. Journal of Thermal Analysis and Calorimetry 101 (3):1085–91. doi:10.1007/s10973-010-0717-9.
  • Durak, S., Y. Erbil, and N. Akıncıtürk. 2011. Sustainability of an architectural heritage site in Turkey: Fire risk assessment in Misi village. International Journal of Architectural Heritage 5 (3):334–48. doi:10.1080/15583051003642721.
  • Elyounssi, K., F. X. Collard, J. Mateke, and J. Blin. 2012. Improvement of charcoal yield by two-step pyrolysis on eucalyptus wood: A thermogravimetric study. Fuel 90 (7):161–67. doi:10.1016/j.fuel.2012.01.030.
  • Fang, M. X., D. K. Shen, Y. X. Li, C. J. Yu, Z. Y. Luo, and K. F. Cen. 2006. Kinetic study on pyrolysis and combustion of wood under different oxygen concentrations by using TG-fir analysis. Journal of Analytical & Applied Pyrolysis 77 (1):22–27. doi:10.1016/j.jaap.2005.12.010.
  • Fei, Y., Q. Wu, L. Yong, W. Guo, and Y. Xu. 2008. Thermal decomposition kinetics of natural fibers: Activation energy with dynamic thermogravimetric analysis. Polymer Degradation & Stability 93 (1):90–98. doi:10.1016/j.polymdegradstab.2007.10.012.
  • Flores, J. J. A., J. G. R. Quiones, M. L. Á. Rodríguez, J. V. A. Vera, J. E. Valencia, S. J. G. Martínez, F. M. Montesino, and A. A. Rosas. 2020. Thermal degradation kinetics and FTIR analysis on the pyrolysis of pinus pseudostrobus, pinus leiophylla and pinus montezumae as forest waste in Western Mexico. Energies Fibrous raw material of sampling for analysis. doi:10.3390/en13040969.GB2677.1-1993.2004.
  • Ge, J., R.-Q. Wang, and L. Liu. 2016. Study on the thermal degradation kinetics of the common wooden boards. Procedia Engineering 135:72–82. doi:10.1016/j.proeng.2016.
  • Grammelis, P., P. Basinas, A. Malliopoulou, and G. Sakellaropoulos. 2009. Pyrolysis kinetics and combustion characteristics of waste recovered fuels. Fuel 88 (1):195–205. doi:10.1016/j.fuel.2008.02.002.
  • Hao, C. T., and R. H. White. 1992. Burning rate of solid wood measured in a heat release rate calorimeter. Fire & Materials 16 (4):197–206. doi:10.1002/fam.810160406.
  • Holstein, A., R. Bassilakis, M. A. Wójtowicz, and M. A. Serio. 2005. Kinetics of methane and tar evolution during coal pyrolysis. Proceedings of the Combustion Institute 30 (2):2177–85. doi:10.1016/j.proci.2004.08.231.
  • Huai, C. P., J. C. Xie, F. Liu, J. T. Du, D. H. C. Chow, and J. P. Liu. 2021. Experimental and numerical analysis of fire risk in historic Chinese temples: A case in Beijing. International Journal of Architectural Historical. doi:10.1080/15583058.2021.1916648.
  • Ibrahim, M. N., K. Abdul-Hamid, M. S. Ibrahim, A. Mohd-Din, R. M. Yunus, and M. R. Yahya. 2011. The development of fire risk assessment method for heritage building. Procedia Engineering 20:317–24. doi:10.1016/j.proeng.2011.11.172.
  • Jankovic. 2014. The pyrolysis process of wood biomass samples under isothermal xperimental conditions-energy density considerations: Application of the distributed apparent activation energy model with a mixture of distribution functions. Cellusole 21 (4):2285–314. doi:10.1007/s10570-014-0263-x.
  • Jiang, S., X. Hu, L. Wu, L. Zhang, S. Wang, T. Li, D. Xia, and C.-Z. Li. 2018. Oxidative pyrolysis of mallee wood biomass, cellulose and lignin. Fuel 217 (APR.1):382–88. doi:10.1016/j.fuel.2017.12.075.
  • Jiang, B.-S., Y. Sun, B. Bi, H. Gao, and B.-S. Tian. 2020. Summary of the renovation process of the ancient buddhist buildings in Beihai. Construction Science and Technology 5:108–11. in Chinese. doi:10.16116/j.cnki.jskj.2020.05.026.
  • Kim, H. S., S. Kim, H. J. Kim, and H. S. Yang. 2006. Thermal properties of bio-flour-filled polyolefin composites with different compatibilizing agent type and content. Thermochimica Acta 451 (1–2):181–88. doi:10.1016/j.tca.2006.09.013.
  • Kim, S. S., J. Kim, Y. H. Park, and Y. K. Park. 2010. Pyrolysis kinetics and decomposition characteristics of pine trees. Bioresource Technology 101 (24):9797–802. doi:10.1016/j.biortech.2010.07.094.
  • Klinar, D., J. Golob, and M. Krajnc. 2003. The curing of diallylterephthalate determination of the kinetic triplet A, Ea, app, f (alpha) using the isoconversional method. Acta Chimica Slovenica 50 (3):473–90.
  • Liang, X., and J. Kozinski. 2000. Numerical modeling of combustion and pyrolysis of cellulosic biomass in thermogravimetric systems. Fuel 79 (12):1477–86. doi:10.1016/S0016-2361(99)00286-0.
  • Li, M., L. Liu, L. Jiang, F. H. Gou, and J. H. Sun. 2019. Application of distributed activation energy models to polymer pyrolysis: Effects of distributed model selection, characteristics, validation, and sensitivity analysis. Fuel 254 (OCT.15):115594.1–115594.18. doi:10.1016/j.fuel.2019.06.002.
  • Li, J., H. Li, B. Zhou, and H. Zhang. 2018. Investigation and statistical analysis of fire loads of 83 historic buildings in Beijing. International Journal of Architectural Heritage 1–12. doi:10.1080/15583058.2018.1550535.
  • Liu, N. A., W. Fan, R. Dobashi, and L. Huang. 2002. Kinetic modeling of thermal decomposition of natural cellulosic materials in air atmosphere. Journal of Analytical & Applied Pyrolysis 63 (2):303–25. doi:10.1016/S0165-2370(01)00161-9.
  • Li, H.-Q., Y. Yu, and X. Yu. 2012. On fire protection problems and its countermeasures about chinese ancient architecture. Applied Mechanics and Materials 204 (208):3365–68. doi:10.4028/.scientific.net/AMM.204-208.3365.
  • Luan, T. V., V. Legrand, and F. Jacquemin. 2014. Thermal decomposition kinetics of balsa wood: Kinetics and degradation mechanisms comparison between dry and moisturized materials. Polymer Degradation & Stability 110:208–15. doi:10.1016/j.polymdegradstab.2014.09.004.
  • Lu, K. M., W. J. Lee, W. H. Chen, and T. C. Lin. 2013. Thermogravimetric analysis and kinetics of co-pyrolysis of raw/torrefied wood and coal blends. Appl. Energy 10557–65. doi:10.1016/j.apenergy.2012.12.050.
  • Manya, J. 2003. Kinetics of biomass pyrolysis: A reformulated three-parallel-reactions model. Industrial & Engineering Chemistry Research 42 (3):434–41. doi:10.1021/ie020218p.
  • Matsuo, M., M. Yokoyama, K. Umemura, J. Gril, K. Yano, and S. Kawai. 2010. Color changes in wood during heating: Kinetic analysis by applying a time-temperature superposition method. Applied Physics A Materials Science & Processing A 99 (47–52). doi: 10.1007/s00339-010.5542-2.
  • Núñez, L., F. Fraga, M. R. Núñez, and M. Villanueva. 2000. Thermogravimetric study of the decomposition process of the system badge (n=0)/1,2 DCH. Polymer 41 (12):4635–41. doi:10.1016/s0032-3861(99)00687-4.
  • Östman, B., D. Brandon, and H. Frantzich. 2017. Fire safety engineering in timber buildings. Fire Safety Journal 91:11–20. doi:10.1016/j.firesaf.2017.05.002.
  • Park, Y. H., J. Kim, S. S. Kim, and Y. W. Park. 2009. Pyrolysis characteristics and kinetics of oak trees using thermogravimetric analyzer and micro-tubing reactor. Bioresource Technology 100 (1):400–05. doi:10.1016/j.biortech.2008.06.040.
  • Poletto, M., A. J. Zattera, and R. Santana. 2012. Thermal decomposition of wood: Kinetics and degradation mechanisms. Bioresource Technology 126:7–12. doi:10.1016/j.biortech.2017.06.155.
  • Rasmussen, H., D. Tanner, H. R. Sorensen, and A. S. Meyer. 2017. New degradation compounds from lignocellulosic biomass pretreatment: Routes for formation of potent oligophenolic enzyme inhibitors. Green Chemistry 19 (2):464–73. doi:10.1039/C6GC01809B.
  • Regueira, R., and M. Guaita. 2018. Numerical simulation of the fire behaviour of timber dovetail connections. Fire Safety Journal 96:1–12. doi:10.1016/j.firesaf.2017.12.005.
  • Richter, F., and G. Rein. 2020. A multiscale model of wood pyrolysis in fire to study the roles of chemistry and heat transfer at the mesoscale. Combustion and Flame 216:316–25. doi:10.1016/j.combustflame.2020.02.029.
  • Sandu, I. C. A., M. Brebu, C. Luca, I. Sandu, and C. Vasile. 2003. Thermogravimetric study on the ageing of lime wood supports of old paintings-science direct. Polymer Degradation & Stability 80 (1):83–91. doi:10.1016/S0141-3910(02)00386-5.
  • Sa, A., B. Saha, B. Mzmta, and C. Aana. 2021. Investigation of kinetic decomposition characteristics of Malaysian wood species using Coats and Redfern (CR) method. Materials Today: Proceedings. doi:10.1016/j.matpr.2020.11.341b.
  • Schmid, J., M. Klippel, A. Just, and A. Frangi. 2014. Review and analysis of fire resistance tests of timber members in bending, tension and compression with respect to the reduced cross-section method. Fire Safety Journal 68:81–99. doi:10.1016/j.firesaf.2014.05.006.
  • Senneca, O. 2007. Kinetics of pyrolysis, combustion and gasification of three biomass fuels. Fuel Processing Technology 88 (1):87–97. doi:10.1016/j.fuproc.2006.09.002.
  • Sharma, A., and B. Mohanty. 2021. Thermal degradation of mango (Mangifera indica) wood sawdust in a nitrogen environment: Characterization, kinetics, reaction mechanism, and thermodynamic analysis. RSC Advances 11 (22):13396–408. doi:10.1039/D1RA01467F.
  • Shebani, A. N., A. J. van Reenen, and M. Meincken. 2008. The effect of wood extractives on the thermal stability of different wood species. Thermochimica Acta 47143:50. doi:10.1016/j.tca.2008.02.020.
  • Shen, D. K., S. Gua, K. H. Luo, A. V. Bridgwater, and M. X. Fang. 2009. Kinetic study on thermal decomposition of woods in oxidative environment. Fuel 88 (6):1024–30. doi:10.1016/j.fuel.2008.10.034.
  • Sinha, A., J. A. Nairn, and R. Gupta. 2011. Thermal degradation of bending strength of plywood and oriented strand board: A kinetics approach. Wood Science and Technology 45315–30. doi:10.1007/s00226-010-0329-3.
  • Slopiecka, K., P. Bartocci, and F. Fantozzi. 2012. Thermogravimetric analysis and kinetic study of poplar wood pyrolysis. Applied Energy 97:491–97. doi:10.1016/j.apenergy.2011.12.056.
  • Telmo, C., and J. Lousada. 2011. The explained variation by lignin and extractive contents on higher heating value of wood. Biomass & Bioenergy 35 (5):1663–67. doi:10.1016/j.biombioe.
  • Tomassetti, M. L., Campanella, and R. Tomellini. 1990. Thermogravimetric analysis of ancient and fresh woods. Thermochimica Acta 170:51–65. doi:10.1016/0040-6031(90)80524-3.
  • Valero, A., and S. Usón. 2011. Oxy-co-gasification of coal and biomass in an integrated gasification combined cycle (igcc) power plant. Energy 31 (10–11):1643–55. doi:10.1016/j.energy.2006.01.005.
  • Varma, A. K., L. S. Thakur, R. Shankar, and P. Mondal. 2019. Pyrolysis of wood sawdust: Effects of process parameters on products yield and characterization of products. Waste Management 89(APR):224–235. doi:10.1016/j.wasman.2019.04.016.
  • Wang, H., N. Jia, and Y. Xin. 2017. Thermogravimetric analysis experiment and kinetic analysis of wood. Fire Science and Technology 36 (9):1209–12. in Chinese.
  • White, R. H. 1987. Effect of lignin content and extractives on the higher heating value of wood. Wood & Fiber Science 19 (4):446–52. doi:10.1177/004051758705701013.
  • Yan, H.-P., -X.-X. Lu, and T.-F. Qin. 1997. Study on chemical kinetics of wood pyrolysis by thermogravimetric analysis. Chinese Journal of Wood Industry 11 (2):14–18. in Chinese CNKI:SUN:MCGY.0.1997-02-003.
  • Zhang, X., W.-Q. Qin, and F. Li. 2008. Study on the thermal stability and degradation kinetics of the woods from an ancient building. Fire Science and Technology 27 (9):636–639+647. in Chinese.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.