978
Views
1
CrossRef citations to date
0
Altmetric
Research Article

An Integrated Modelling Approach for the Seismic Collapse Assessment of Masonry Towers

ORCID Icon, , & ORCID Icon
Pages 90-113 | Received 27 Mar 2022, Accepted 17 Oct 2022, Published online: 01 Nov 2022

References

  • Allen, R. H., and X. Duan. 1995. Effects of linearizing on rocking-block toppling. Journal of Structural Engineering 121 (7):1146–49. doi:10.1061/(asce)0733-9445(1995)121:7(1146).
  • Allen, R. H., I. J. Oppenheim, A. R. Parker, and J. Bielak. 1986. On the dynamic response of rigid body assemblies. Earthquake Engineering & Structural Dynamics 14 (6):861–76. doi:10.1002/eqe.4290140604.
  • Al Shawa, O., G. de Felice, A. Mauro, and L. Sorrentino. 2012. Out-of-plane seismic behaviour of rocking masonry walls. Earthquake Engineering & Structural Dynamics 41 (5):949–68. doi:10.1002/eqe.
  • American Society of Civil Engineers (ASCE). 2007. Seismic design criteria for structures, systems, and components in nuclear facilities. 43–45.
  • Azevedo, J., G. E. Sincraian, and J. V. Lemos. 2000. Seismic Behaviour of Blocky Masonry Structures. Earthquake Spectra 16 (2):337–65. doi:10.1193/1.1586116.
  • Castellazzi, G., A. M. D’Altri, S. de Miranda, A. Chiozzi, and A. Tralli. 2018. Numerical insights on the seismic behavior of a nonisolated historical masonry tower. Bulletin of Earthquake Engineering 16 (2):933–61. doi:10.1007/s10518-017-0231-6.
  • Clemente, P. 1998. Introduction to the dynamics of stone arches. International Journal of Earthquake Engineering and Structural Dynamics 27 (5):513–22. doi:10.1002/(SICI)1096-9845(199805)27:5<513::AID-EQE740>3.0.CO;2-O.
  • Clementi, F., G. Milani, A. Ferrante, M. Valente, and S. Lenci. 2020. Crumbling of amatrice clock tower during 2016 central Italy seismic sequence: Advanced numerical insights. Frattura Ed Integrita Strutturale 14 (51):313–35. doi:10.3221/IGF-ESIS.51.24.
  • D’Ayala, D., and E. Speranza. 2002. An integrated procedure for the assessment of seismic vulnerability of historic buildings. Proceedings of the 12th European Conference on Earthquake Engineering, London, UK, Paper 561.
  • DeJong, M. J. 2012. Seismic response of stone masonry spires: Analytical modeling. Engineering Structures 40:556–65. doi:10.1016/j.engstruct.2012.03.010.
  • DeJong, M. J. 2014. Rocking of structures during Earthquakes: From collapse of masonry to modern design. SECED Newsletter 25 (3):1–8.
  • DeJong, M. J., L. De Lorenzis, S. Adams, and J. A. Ochsendorf. 2008. Rocking stability of masonry arches in seismic regions. Earthquake Spectra 24 (4):847–65. doi:10.1193/1.2985763.
  • DeJong, M. J., and E. G. Dimitrakopoulos. 2014. Dynamically equivalent rocking structures. Earthquake Engineering & Structural Dynamics 43 (10):1543–63. doi:10.1002/eqe.2410.
  • DeJong, M. J., and J. A. Ochsendorf. 2006. Analysis of vaulted masonry structures subjected to horizontal ground motion. In Proceedings, Fifth International Conference on the Structural Analysis of Historical Constructions, ed. P. B. Lourenco, P. Roca, C. Modena, and S. Agrawal, 973–80. New Delhi.
  • De Lorenzis, L., M. J. DeJong, and J. A. Ochsendorf. 2007. Failure of masonry arches under impulse base motion. Earthquake Engineering & Structural Dynamics 36 (14):2119–36. doi:10.1002/eqe.
  • Dimitrakopoulos, E. G., and M. J. DeJong. 2012. Revisiting the rocking block: Closed-form solutions and similarity laws. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 468 (2144):2294–318. doi:10.1098/rspa.2012.0026.
  • DMI. 2008. Decreto Del Ministro Delle Infrastrutture 14 Gennaio 2008. Approvazione Delle Nuove Norme Tecniche per Le Costruzioni. Gazzetta Ufficiale Della Repubblica Italiana n. 29, Supplemento Ordinario n. 30.
  • Doherty, K., M. C. Griffith, N. T. K. Lam, and J. L. Wilson. 2002. Displacement-based seismic analysis for out-of-plane bending of unreinforced masonry walls. Earthquake Engineering & Structural Dynamics 31 (4):833–50. doi:10.1002/eqe.126.
  • EN 1998-1. 2004. Eurocode 8. Design of structures for Earthquake resistance—part 1: General rules, seismic actions and rules for buildings. Brussels, Belgium: CEN.
  • Ferrante, A., F. Clementi, and G. Milani. 2020. Advanced numerical analyses by the non-smooth contact dynamics method of an ancient masonry bell tower. Mathematical Methods in the Applied Sciences 43 (13):7706–25. doi:10.1002/mma.6113.
  • Ferrante, A., D. Loverdos, F. Clementi, G. Milani, A. Formisano, S. Lenci, and V. Sarhosis. 2021. discontinuous approaches for nonlinear dynamic analyses of an ancient masonry tower. Engineering Structures 230:111626. doi:10.1016/j.engstruct.2020.111626.
  • Giresini, L., and M. Sassu. 2017. Horizontally restrained rocking blocks: evaluation of the role of boundary conditions with static and dynamic approaches. Bulletin of Earthquake Engineering 15 (1):385–410. doi:10.1007/s10518-016-9967-7.
  • Heyman, J. 1992. Leaning towers. Meccanica 27 (3):153–59. doi:10.1007/BF00430041.
  • Housner, G. W. 1963. The behavior of inverted pendulum structures during Earthquakes. Bulletin of the Seismological Society of America 53 (2):403–17. doi:10.1785/BSSA0530020403.
  • Iwan, W. D., and X. D. Chen. 1994. Important near-field ground motion data from the landers Earthquake. In Proceedings, 10th European Conference on Earthquake Engineering, ed. G. Duma. Rotterdam.
  • Klöckner, A. 2008. MeshPy. https://pypi.org/project/MeshPy/
  • Lachanas, C. G., and D. Vamvatsikos. 2022. Rocking incremental dynamic analysis. Earthquake Engineering and Structural Dynamics 51 (3):688–703. doi:10.1002/eqe.3586.
  • Lagomarsino, S. 2015. Seismic assessment of rocking masonry structures. Bulletin of Earthquake Engineering 13 (1):97–128. doi:10.1007/s10518-014-9609-x.
  • Liew, A., and T. Mendez Echenagucia. 2017. compas_fea: Finite element analysis package for the COMPAS framework. https://compas.dev/compas_fea/latest/
  • Makris, N., and Y. Roussos. 1998. Rocking response and overturning of equipment under horizontal pulse-type motions. Report No. PEER-98/05, Pacific Earthquake Engineering Center, University of California, Berkeley. Accessed August 11, 2022. https://apps.peer.berkeley.edu/publications/peer_reports/reports_1998/9805.pdf
  • Makris, N., and Y. Roussos. 2000. Rocking response of rigid blocks under near-source ground motions. Geotechnique 50 (3):243–62. doi:10.1680/geot.2000.50.3.243.
  • Makris, N., and M. F. Vassiliou. 2013. Planar rocking response and stability analysis of an array of free-standing columns capped with a freely supported rigid beam. Earthquake Engineering & Structural Dynamics 42 (3):431–49. doi:10.1002/eqe.2222.
  • Malomo, D., M. J. DeJong, and A. Penna. 2021. Influence of bond pattern on the in-plane behavior of URM piers. International Journal of Architectural Heritage 15 (10):1492–511. doi:10.1080/15583058.2019.1702738.
  • Mauro, A., G. de Felice, and M. J. DeJong. 2015. The relative dynamic resilience of masonry collapse mechanisms. Engineering Structures 85:182–94. doi:10.1016/j.engstruct.2014.11.021.
  • McKenna, F., G. L. Fenves, M. H. Scott, and B. Jeremic. 2000. Open system for Earthquake engineering simulation (OpenSees).
  • Mehrotra, A., and M. J. DeJong. 2017. The performance of slender monuments during the 2015 Gorkha, Nepal, Earthquake. Earthquake Spectra 33 (S1):321–43. doi:10.1193/120616EQS223M.
  • Mehrotra, A., and M. J. DeJong. 2018. A CAD-interfaced dynamics-based tool for analysis of masonry collapse mechanisms. Engineering Structures 172:833–49. doi:10.1016/j.engstruct.2018.06.053.
  • Milani, G., and F. Clementi. 2021. Advanced seismic assessment of four masonry bell towers in Italy after Operational Modal Analysis (OMA) Identification. International Journal of Architectural Heritage 15 (1):157–86. doi:10.1080/15583058.2019.1697768.
  • OPCM. 2006. Ordinanza Del Presidente Del Consiglio Dei Ministri 28 Aprile 2006. Criteri Generali per l’individuazione Delle Zone Sismiche e per La Formazione e l’aggiornamento Degli Elenchi Delle Medesime Zone. (Ordinanza n. 3519).
  • Oppenheim, I. J. 1992. The masonry arch as a four-link mechanism under base motion. Earthquake Engineering & Structural Dynamics 21 (11):1005–17. doi:10.1002/eqe.4290211105.
  • Pacific Earthquake Engineering Research Center (PEER). 2014. PEER ground motion database. https://ngawest2.berkeley.edu/site
  • PCM-DPC MiBAC. 2006. Model A-DC Scheda per Il Rilievo Del Danno Ai Beni Culturali - Chiese.
  • Peña, F., P. B. Lourenço, N. Mendes, and D. V. Oliveira. 2010. Numerical models for the seismic assessment of an old masonry tower. Engineering Structures 32 (5):1466–78. doi:10.1016/j.engstruct.2010.01.027.
  • Priestley, M. J. N. 1985. Seismic behaviour of unreinforced masonry walls. Bulletin of the New Zealand Society for Earthquake Engineering 18 (2):191–205. doi:10.5459/bnzsee.18.2.191-205.
  • Pulatsu, B., F. Gencer, and E. Erdogmus. 2020. Study of the effect of construction techniques on the seismic capacity of ancient dry-joint masonry towers through DEM. European Journal of Environmental and Civil Engineering 26 (9):3913–30. doi:10.1080/19648189.2020.1824823.
  • Robert McNeel & Associates. 2014. Rhinoceros 5.
  • Sarhosis, V., G. Milani, A. Formisano, and F. Fabbrocino. 2018. Evaluation of different approaches for the estimation of the seismic vulnerability of masonry towers. Bulletin of Earthquake Engineering 16 (3):1511–45. doi:10.1007/s10518-017-0258-8.
  • Shakya, M., H. Varum, R. Vicente, and A. Costa. 2018. Seismic vulnerability assessment methodology for slender masonry structures. International Journal of Architectural Heritage 12 (7–8):1297–326. doi:10.1080/15583058.2018.1503368.
  • Shehu, R. 2022. Preliminary assessment of the seismic vulnerability of three inclined bell-towers in Ferrara, Italy. International Journal of Architectural Heritage 16 (4):485–517. doi:10.1080/15583058.2020.1805045.
  • Si, H. 2015. TetGen, a Delaunay-based quality tetrahedral mesh generator. ACM Transactions on Mathematical Software 41 (2):Article 11. doi:10.1145/2629697.
  • Sorrentino, L., S. Kunnath, G. Monti, and G. Scalora. 2008. Seismically induced one-sided rocking response of unreinforced masonry facades. Engineering Structures 30 (8):2140–53. doi:10.1016/j.engstruct.2007.02.021.
  • Sorrentino, L., R. Masiani, and M. C. Griffith. 2008. The vertical spanning strip wall as a coupled rocking rigid body assembly. Structural Engineering and Mechanics 29 (4):433–53. doi:10.12989/sem.2008.29.4.433.
  • Torelli, G., D. D’Ayala, M. Betti, and G. Bartoli. 2020. Analytical and numerical seismic assessment of heritage masonry towers. Bulletin of Earthquake Engineering 18 (3):969–1008. doi:10.1007/s10518-019-00732-y.
  • Valente, M., and G. Milani. 2016a. Non-linear dynamic and static analyses on eight historical masonry towers in the North-East of Italy. Engineering Structures 114:241–70. doi:10.1016/j.engstruct.2016.02.004.
  • Valente, M., and G. Milani. 2016b. Seismic assessment of historical masonry towers by means of simplified approaches and standard FEM. Construction and Building Materials 108:74–104. doi:10.1016/j.conbuildmat.2016.01.025.
  • Van Mele, T., and Many Others. 20172021. COMPAS: A framework for computational research in architecture and structures. doi:10.5281/zenodo.2594510.