Publication Cover
International Journal of Architectural Heritage
Conservation, Analysis, and Restoration
Volume 18, 2024 - Issue 2
108
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Investigation of Earthquake Damage Assessment of Loess Caves of Ancient Buildings Using a Shaking Table

ORCID Icon, , , , , & show all
Pages 316-332 | Received 04 Aug 2021, Accepted 05 Nov 2022, Published online: 01 Dec 2022

References

  • Alessandra, M., S. Luigi, L. Domenico, and M. Jason. 2018. Seismic risk assessment of New Zealand unreinforced masonry churches using statistical procedures. International Journal of Architectural Heritage 12 (3):448–64. doi:10.1080/15583058.2017.1323242.
  • Ali, Q., N. Ahmad, T. Schacher, M. Ashraf, and M. Rashid. 2017. Shake table tests on single-story dhajji dewari traditional buildings. International Journal of Architectural Heritage 11 (5–8):1046–59.
  • Alterio, L., G. Russo, and F. Silvestri. 2017. Seismic vulnerability reduction for historical buildings with non-invasive subsoil treatments: the case study of the mosaics palace at herculaneum. International Journal of Architectural Heritage 11 (1–4):382–98.
  • Altunisik, A. C., F. Sunca, A. F. Genc, and C. Tavsan. 2021. Post-earthquake damage assessments of historic mosques and effects of near-fault and far-fault ground motions on seismic responses. International Journal of Architectural Heritage 2011475.
  • Asteris, P. G., M. Chronopoulos, C. Chrysostomou, H. Varum, V. Plevris, N. Kyriakides, and V. Silva. 2014. Seismic vulnerability assessment of historical masonry structural systems. Engineering Structures 62:118–34. doi:10.1016/j.engstruct.2014.01.031.
  • Brando, G., G. De Matteis, and E. Spacone. 2017. Predictive model for the seismic vulnerability assessment of small historic centres: Application to the inner Abruzzi Region in Italy. Engineering Structures 153:81–96. doi:10.1016/j.engstruct.2017.10.013.
  • Candeias, P. X., A. Campos Costa, N. Mendes, A. A. Costa, and P. B. Lourenço. 2017. Experimental assessment of the out-of-plane performance of masonry buildings through shaking table tests. International Journal of Architectural Heritage 11 (1):31–58.
  • De Felice, G., S. De Santis, P. B. Lourenco, and N. Mendes. 2017. Methods and challenges for the seismic assessment of historic masonry structures. International Journal of Architectural Heritage 11 (1):143–60.
  • Enrique, G. M., I. Laura, V. Ilaria, and U. Filippo. 2019. An innovative methodology for online surrogate-based model updating of historic buildings using monitoring data. International Journal of Architectural Heritage 15 (1):92–112.
  • Ferreira, C. F., D. D’Ayala, J. L. Fernandez-Cabo, M. Arce-Blanco, R. Diez-Barra, and P. Hurtado-Valdez. 2015. Numerical modeling and seismic assessment of historic planked timber arches. International Journal of Architectural Heritage 9 (6):712–29. doi:10.1080/15583058.2015.1041194.
  • Formisano, A. 2012. Seismic damage assessment of school buildings after 2012 Emilia Romagna earthquake. Ingegneria Sismica 29 (2–3):72–86.
  • GB 50223-2008. 2008. Classification standard for seismic fortification of construction engineering. Beijing, China: China Architecture & Building Press. in Chinese.
  • Ghobarah, A., H. Abou-Elfath, and A. Biddah. 1999. Response-based damage assessment of structures. Earthquake Engineering & Structural Dynamics 28 (1):79–104. doi:10.1002/(SICI)1096-9845(199901)28:1<79::AID-EQE805>3.0.CO;2-J.
  • Goncalves, A. M., P. Candeias, L. Guerreiro, J. G. Ferreira, and A. C. Costa. 2019. Characterization of timber masonry walls with dynamic tests. International Journal of Architectural Heritage 13 (1–4):298–313. doi:10.1080/15583058.2018.1436727.
  • Graziotti, F., U. Tomassetti, S. Kallioras, A. Penna, and G. Magenes. 2017. Shaking table test on a full scale URM cavity wall building. Bulletin of Earthquake Engineering 15 (12):5329–64. doi:10.1007/s10518-017-0185-8.
  • Han, J. 2020. Politics of representation over Yaodong (Cave-dwelling) in Loess Plateau, China. Journal of the Association of Korean Geographers 9 (3):457–73. doi:10.25202/JAKG.9.3.2.
  • Hao, Y. N., X. W. Liang, and Y. Q. Lan. 2021. Numerical simulation and dynamic analysis of single-hole cliff-side loess cave dwelling under seismic actions. Geofluids 2021:6890445. doi:10.1155/2021/6890445.
  • Hu, S., H. J. Qiu, N. L. Wang, Y. F. Cui, J. D. Wang, X. G. Wang, S. Y. Ma, D. D. Yang, and M. M. Cao. 2020. The influence of loess cave development upon landslides and geomorphologic evolution: A case study from the northwest Loess Plateau, China. Geomorphology 359:107167. doi:10.1016/j.geomorph.2020.107167.
  • Kallioras, S., G. Guerrini, U. Tomassetti, B. Marchesi, A. Penna, F. Graziotti, and G. Magenes. 2018. Experimental seismic performance of a full-scale unreinforced clay-masonry building with flexible timber diaphragms. Engineering Structures 161:231–49. doi:10.1016/j.engstruct.2018.02.016.
  • Kunnath, S. K., A. M. Reinhorn, and Y. J. Park. 1990. Analytical modeling of inelastic seismic response of RC structures. ASCE Journal of Structural Engineering 116 (4):996–1017. doi:10.1061/(ASCE)0733-9445(1990)116:4(996).
  • Lagomarsino, S., and S. Cattari. 2015. PERPETUATE guidelines for seismic performance - based assessment of cultural heritage masonry structures. Bulletin of Earthquake Engineering 13 (1):13–47. doi:10.1007/s10518-014-9674-1.
  • Lorenzoni, F., M. R. Valluzzi, and C. Modena. 2019. Seismic assessment and numerical modelling of the Sarno Baths, Pompeii. Journal of Cultural Heritage 40:288–98. doi:10.1016/j.culher.2019.04.017.
  • Michel, C., P. Guéguen, and P. Y. Bard. 2008. Dynamic parameters of structures extracted from ambient vibration measurements: An aid for the seismic vulnerability assessment of existing buildings in moderate seismic hazard regions. Soil Dynamic and Earthquake Engineering 28 (8):593–604. doi:10.1016/j.soildyn.2007.10.002.
  • Peng, J. B., P. Sun, O. Igwe, and X. Li. 2018. Loess caves, a special kind of geo-hazard on loess plateau, northwestern China. Engineering Geology 236:79–88. doi:10.1016/j.enggeo.2017.08.012.
  • Soroushian, S., E. Rahmanishamsi, C. Jenkins, and E. M. Maragakis. 2019. Fragility analysis of suspended ceiling systems in a full-scale experiment. Journal of Structural Engineering 145 (4):04019005. doi:10.1061/(ASCE)ST.1943-541X.0002273.
  • Vallis, S., F. Galvez, M. Swidan, C. Orchiston, and J. Ingham. 2018. Classical temples and industrial stores: survey analysis of historic unreinforced masonry (URM) precincts to inform urban seismic risk mitigation. International Journal of Architectural Heritage 12 (5–8):1276–96. doi:10.1080/15583058.2018.1503372.
  • Xue, J. Y., H. Q. Ling, X. B. Zhao, F. L. Zhang, and H. L. Zhou. 2022. Seismic performance on stone masonry loess cave retrofitted using composite materials. Journal of Building Engineering 46:103704. doi:10.1016/j.jobe.2021.103704.
  • Xue, J. Y., X. B. Zhao, F. L. Zhang, D. Xu, X. F. Hu, and L. L. Ma. 2020. Shaking table tests on seismic behavior of the underground loess cave of earth building of traditional dwellings. Engineering Structures 207:110221. doi:10.1016/j.engstruct.2020.110221.
  • Zhang, F. L., X. G. Liu, J. Y. Xue, H. Mahmoud, P. C. Hu, and G. M. Zhou. 2021. Experimental seismic response of a damaged brick cave dwelling repaired using a cement mortar coating with polypropylene packing strap mesh. Journal of Structural Engineering 147 (12):04021201.
  • Zhao, X., P. Nie, J. Y. Zhu, L. P. Tong, and Y. F. Liu. 2020. Evaluation of thermal environments for cliff-side cave dwellings in cold region of China. Renewable Energy 158:154–66. doi:10.1016/j.renene.2020.05.128.
  • Zhu, X. R., J. P. Liu, L. Yang, and R. R. Hu. 2014. Energy performance of a new Yaodong dwelling, in the Loess Plateau of China. Energy and Buildings 70:159–66. doi:10.1016/j.enbuild.2013.11.050.
  • Zhu, J. Y., and L. P. Tong. 2017. Experimental study on the thermal performance of underground cave dwellings with coupled Yaokang. Renewable Energy 108:156–68. doi:10.1016/j.renene.2017.02.051.
  • Zhu, J. Y., L. P. Tong, R. X. Li, J. Z. Yang, and H. X. Li. 2020. Annual thermal performance analysis of underground cave dwellings based on climate responsive design. Renewable Energy 145:1633–46. doi:10.1016/j.renene.2019.07.056.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.