Publication Cover
International Journal of Architectural Heritage
Conservation, Analysis, and Restoration
Volume 18, 2024 - Issue 7
812
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Development and Validation of Empirical Formulations for Predicting the Frequency of Historic Masonry Towers

ORCID Icon, ORCID Icon & ORCID Icon
Pages 1164-1184 | Received 18 Oct 2022, Accepted 18 May 2023, Published online: 29 May 2023

References

  • Acito, M., M. Bocciarelli, C. Chesi, and G. Milani. 2014. Collapse of the clock tower in Finale Emilia after the May 2012 Emilia Romagna earthquake sequence: Numerical insight. Engineering Structures 72:70–91. doi:10.1016/j.engstruct.2014.04.026.
  • Ashayeri, I., M. Biglari, A. Formisano, and M. D’Amato. 2021. Ambient vibration testing and empirical relation for natural period of historical mosques. Case study of eight mosques in Kermanshah, Iran. Construction and Building Materials 289:123191. doi:10.1016/j.conbuildmat.2021.123191.
  • Azzara, R. M., G. De Roeck, M. Girardi, C. Padovani, D. Pellegrini, and E. Reynders. 2018. The influence of environmental parameters on the dynamic behaviour of the san frediano bell tower in Lucca. Engineering Structures 156:175–87. doi:10.1016/j.engstruct.2017.10.045.
  • Bartoli, G., M. Betti, A. M. Marra, and S. Monchetti. 2017. Semiempirical formulations for estimating the main frequency of slender masonry towers. Journal of Performance of Constructed Facilities 31 (4):4017025. doi:10.1061/(ASCE)CF.1943-5509.0001017.
  • Bartoli, G., M. Betti, A. M. Marra, and S. Monchetti. 2020. On the role played by the openings on the first frequency of historic masonry towers. Bulletin of Earthquake Engineering 18 (2):427–51. doi:10.1007/s10518-019-00662-9.
  • Bassoli, E., L. Vincenzi, A. M. D’Altri, S. de Miranda, M. Forghieri, and G. Castellazzi. 2018. Ambient vibration‐based finite element model updating of an earthquake‐damaged masonry tower. Structural Control & Health Monitoring 25 (5):e2150. doi:10.1002/stc.2150.
  • Bayraktar, A., I. Çalik, and T. Türker. 2022. A simplified fundamental frequency formulation based on in-situ tests for masonry stone minarets. Experimental Techniques 46 (2):225–38. doi:10.1007/s40799-021-00474-0.
  • Benedettini, F., and C. Gentile (2007). Ambient vibration testing and operational modal analysis of a masonry tower. 2nd Int. Operational Modal Analysis Conference (IOMAC’07). Copenhagen, Denmark. 285–92.
  • Bru, D., S. Ivorra, M. Betti, J. M. Adam, and G. Bartoli. 2019. Parametric dynamic interaction assessment between bells and supporting slender masonry tower. Mechanical Systems and Signal Processing 129:235–49. doi:10.1016/j.ymssp.2019.04.038.
  • Cabboi, A., C. Gentile, and A. Saisi. 2017. From continuous vibration monitoring to FEM-based damage assessment: Application on a stone-masonry tower. Construction and Building Materials 156:252–65. doi:10.1016/j.conbuildmat.2017.08.160.
  • Calik, I., A. Bayraktar, T. Türker, and M. Akköse. 2020. Empirical formulation for estimating the fundamental frequency of historical stone mosques with masonry domes. The Structural Design of Tall & Special Buildings 29 (9):e1732. doi:10.1002/tal.1732.
  • Cantieni, R. 2015. One-year monitoring of a historic bell tower. Key Engineering Materials 628:73–78. https://www.scientific.net/doi:10.4028/KEM.628.73.
  • Cimellaro, G. P., S. Piantà, and A. De Stefano. 2012. Output-only modal identification of ancient L’Aquila city hall and civic tower. Journal of Structural Engineering 138 (4):481–91. doi:10.1061/(ASCE)ST.1943-541X.0000494.
  • Clough, R. W., and J. Penzien. 1995. Dynamics of Structures, 3rd edn. McGraw-Hill, New York, USA.
  • Cunha, Á., L. F. Ramos, F. Magalhães, and P. B. Lourenço. 2014. Dynamic identification and modelling of Clérigos Tower: Initial studies. Proceedings of the 9th International Conference on Structural Dynamics (EURODYN 2014), Porto, Portugal. 1445–1452.
  • D’Ambrisi, A., V. Mariani, and M. Mezzi. 2012. Seismic assessment of a historical masonry tower with nonlinear static and dynamic analyses tuned on ambient vibration tests. Engineering Structures 36:210–19. doi:10.1016/j.engstruct.2011.12.009.
  • Diaferio, M., D. Foti, and F. Potenza. 2018. Prediction of the fundamental frequencies and modal shapes of historic masonry towers by empirical equations based on experimental data. Engineering Structures 156:433–42. doi:10.1016/j.engstruct.2017.11.061.
  • Faccio, P., S. Podestà, and A. Saetta. 2011. Venezia, Campanile della Chiesa di Sant’Antonin, Esempio 5. Linee Guida per La Valutazione e Riduzione Del Rischio Sismico Del Patrimonio Culturale Allineate Alle Nuove Norme Tecniche per Le Costruzioni (DM 14/01/2008), Circolare 26:2010.
  • Fanelli, M. 1993. The static safety of masonry towers. Structural Engineering International 3 (4):249–52. doi:10.2749/101686693780607697.
  • Ferraioli, M., A. Lavino, D. Abruzzese, and A. M. Avossa. 2020. Seismic assessment, repair and strengthening of a medieval masonry tower in southern Italy. International Journal of Civil Engineering 18 (9):967–94. doi:10.1007/s40999-020-00515-6.
  • Foti, D., M. Diaferio, N. I. Giannoccaro, and M. Mongelli. 2012. Ambient vibration testing, dynamic identification and model updating of a historic tower. NDT & E International 47:88–95. doi:10.1016/j.ndteint.2011.11.009.
  • Gentile, C., M. Guidobaldi, and A. Saisi. 2016. One-year dynamic monitoring of a historic tower: Damage detection under changing environment. Meccanica 51 (11):2873–89. doi:10.1007/s11012-016-0482-3.
  • Gentile, C., and A. Saisi. 2007. Ambient vibration testing of historic masonry towers for structural identification and damage assessment. Construction and Building Materials 21 (6):1311–21. doi:10.1016/j.conbuildmat.2006.01.007.
  • Gentile, C., A. Saisi, and A. Cabboi. 2015. Structural identification of a masonry tower based on operational modal analysis. International Journal of Architectural Heritage 9 (2):98–110. doi:10.1080/15583058.2014.951792.
  • Ivorra, S., and F. J. Pallarés. 2006. Dynamic investigations on a masonry bell tower. Engineering Structures 28 (5):660–67. doi:10.1016/j.engstruct.2005.09.019.
  • Jaishi, B., W. -X. Ren, Z. -H. Zong, and P. N. Maskey. 2003. Dynamic and seismic performance of old multi-tiered temples in Nepal. Engineering Structures 25 (14):1827–39. doi:10.1016/j.engstruct.2003.08.006.
  • Kohan, P. H., L. G. Nallim, and S. B. Gea. 2011. Dynamic characterization of beam type structures: Analytical, numerical and experimental applications. Applied Acoustics 72 (12):975–81. doi:10.1016/j.apacoust.2011.06.007.
  • Lopez, S., M. D’Amato, L. Ramos, M. Laterza, and P. B. Lourenço. 2019. Simplified formulations for estimating the main frequencies of ancient masonry churches. Frontiers in Built Environment 5:18. doi:10.3389/fbuil.2019.00018.
  • Micelli, F., and A. Cascardi. 2020. Structural assessment and seismic analysis of a 14th century masonry tower. Engineering Failure Analysis 107:104198. doi:10.1016/j.engfailanal.2019.104198.
  • NCSE (2002). Norma de Construcciòn Sismorresistente—Parte General y Edificaciòn, Real Decreto 997/2002 de 27 de Septiembre. Ministerio de Fomento (in Spanish).
  • NTC (2008). Norme tecniche per le costruzioni, D.M. del ministero delle infrastrutture e dei trasporti del 14/01/2008. Gazzetta Ufficiale n. 29 del 04/02/2008 (in Italian).
  • Oliveira, C. S., E. Çakti, V. Camacho, and E. Dar. 2022. Revisiting the frequency laws for ottoman minarets. Analysis of uncertainties. International Journal of Architectural Heritage 1–21. doi:10.1080/15583058.2022.2057881.
  • Preciado, A. 2015. Seismic vulnerability and failure modes simulation of ancient masonry towers by validated virtual finite element models. Engineering Failure Analysis 57:72–87. doi:10.1016/j.engfailanal.2015.07.030.
  • Rainieri, C., and G. Fabbrocino (2011). Predictive correlations for the estimation of the elastic period of masonry towers. Proceedings of Experimental Vibration Analysis for Civil Engineering Structures (EVACES), Varenna, Italy. 513–20.
  • Rainieri, C., A. Marra, and G. Fabbrocino. 2014. On the estimation of the fundamental modal properties of Italian historical masonry towers. Ingegneria Sismica 31 (3–4):4–16.
  • Ramos, L. F., L. Marques, P. B. Lourenço, G. De Roeck, A. Campos-Costa, and J. Roque. 2010. Monitoring historical masonry structures with operational modal analysis: Two case studies. Mechanical Systems and Signal Processing 24 (5):1291–305. doi:10.1016/j.ymssp.2010.01.011.
  • Reynders E. (2012). System Identification Methods for (Operational) Modal Analysis: Review and Comparison. Arch Computat Methods Eng, 19(1), 51–124. 10.1007/s11831-012-9069-x
  • Riva, P., F. Perotti, E. Guidoboni, and E. Boschi. 1998. Seismic analysis of the asinelli tower and earthquakes in Bologna. Soil Dynamics and Earthquake Engineering 17 (7–8):525–50. doi:10.1016/S0267-7261(98)00009-8.
  • Schmidt, T. (2009). Comparison of the dynamic behaviour of 16 historical twin bell towers. IOMAC 2009 - 3rd International Operational Modal Analysis Conference. Portonovo (Ancona), Italy. 483–90.
  • Sepe, V., E. Speranza, and A. Viskovic. 2008. A method for large‐scale vulnerability assessment of historic towers. Structural Control and Health Monitoring: The Official Journal of the International Association for Structural Control and Monitoring and of the European Association for the Control of Structures 15 (3):389–415. doi:10.1002/stc.243.
  • Serhatoğlu, C., and R. Livaoğlu. 2019. A fast and practical approximations for fundamental period of historical Ottoman minarets. Soil Dynamics and Earthquake Engineering 120:320–31. doi:10.1016/j.soildyn.2019.02.010.
  • Shakya, M., H. Varum, R. Vicente, and A. Costa. 2016. Empirical formulation for estimating the fundamental frequency of slender masonry structures. International Journal of Architectural Heritage 10 (1):55–66. doi:10.1080/15583058.2014.951796.
  • Testa, F., A. Barontini, and P. B. Lourenço. 2023. Database_historic_masonry_towers_experimental_frequency.V1. Mendeley Data. https://doi.org/10.17632/czg2gypj89.1
  • The MathWorks, I. 2012. MATLAB R2012a. Natick, Massachusetts, United States.
  • Torelli, G., D. D’Ayala, M. Betti, and G. Bartoli. 2020. Analytical and numerical seismic assessment of heritage masonry towers. Bulletin of Earthquake Engineering 18 (3):969–1008. doi:10.1007/s10518-019-00732-y.
  • Ubertini, F., G. Comanducci, N. Cavalagli, A. L. Pisello, A. L. Materazzi, and F. Cotana. 2017. Environmental effects on natural frequencies of the San Pietro bell tower in Perugia, Italy, and their removal for structural performance assessment. Mechanical Systems and Signal Processing 82:307–22. doi:10.1016/j.ymssp.2016.05.025.
  • Valente, M., and G. Milani. 2016. Non-linear dynamic and static analyses on eight historical masonry towers in the North-East of Italy. Engineering Structures 114:241–70. doi:10.1016/j.engstruct.2016.02.004.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.