1,565
Views
134
CrossRef citations to date
0
Altmetric
Original Articles

Biomedical Applications of Cyclodextrin Based Polyrotaxanes

, &
Pages 383-418 | Received 12 Nov 2006, Accepted 18 Apr 2007, Published online: 02 Aug 2007

References

  • Ooya , T. and Yui , N. 1999 . Polyrotaxanes: Synthesis, structure, and potential in drug delivery . Critical Reviews in Therapeutic Drug Carrier Systems , 16 : 289 – 330 .
  • Takata , T. 2006 . Polyrotaxane and polyrotaxane network: Supramolecular architectures based on the concept of dynamic covalent bond chemistry . Polymer Journal , 38 : 1 – 20 .
  • Panova , I. G. and Topchieva , I. N. 2001 . Rotaxane and polyrotaxanes. Their synthesis and the supramolecular devices based on them . Russian Chemical Reviews , 70 : 23 – 44 .
  • Wenz , G. , Han , B. H. and Muller , A. 2006 . Cyclodextrin rotaxanes and polyrotaxanes . Chemical Reviews , 106 : 782 – 817 .
  • Debouzy , J. , Fauvelle , F. , Crouzy , S. , Girault , L. , Chapron , Y. , Goschl , M. and Gadelle , A. 1998 . Mechanism of alpha‐cyclodextrin induced hemolysis. 2. A study of the factors controlling the association with serine‐, ethanolamine‐, and choline‐phospholipids . Journal of Pharmaceutical Sciences , 87 : 59 – 66 .
  • Nakashima , N. , Kawabuchi , A. and Murakami , H. 1998 . Design and synthesis of cyclodextrin‐based rotaxanes and polyrotaxanes . Journal of Inclusion Phenomena and Molecular Recognition in Chemistry , 32 : 363 – 373 .
  • Harada , A. , Hashidzume , A. and Takashima , Y. 2006 . Cyclodextrin-based supramolecular polymers . Supramolecular Polymers, Polymeric Betains, Oligomers-Advances in Polymer Science , 201 : 1 – 43 .
  • Huang , F. H. and Gibson , H. W. 2005 . Polypseudorotaxanes and polyrotaxanes . Progress in Polymer Science , 30 : 982 – 1018 .
  • Harada , A. 2006 . Supramolecular polymers based on cyclodextrins . Journal of Polymer Science Part A‐Polymer Chemistry , 44 : 5113 – 5119 .
  • Agrawal , Y. K. and Sharma , C. R. 2005 . Supramolecular assemblies and their applications . Reviews in Analytical Chemistry , 24 : 35 – 74 .
  • Takata , T. , Kihara , N. and Furusho , Y. 2004 . Polyrotaxanes and polycatenanes: Recent advances in syntheses and applications of polymers comprising of interlocked structures . Polymer Synthesis, Advances in Polymer Science , : 1 – 75 .
  • Harada , A. 1998 . Polyrotaxanes . Acta Polymerica , 49 : 3 – 17 .
  • Raymo , F. M. and Stoddart , J. F. 1996 . Polyrotaxanes and pseudopolyrotaxanes . Trends in Polymer Science , 4 : 208 – 211 .
  • Harada , A. , Li , J. and Kamachi , M. 1992 . The molecular necklace — a rotaxane containing many threaded alpha‐cyclodextrins . Nature , 356 : 325 – 327 .
  • Ooya , T. , Mori , H. , Terano , M. and Yui , N. 1995 . Synthesis of a biodegradable polymeric supramolecular assembly for drug‐delivery . Macromolecular Rapid Communications , 16 : 259 – 263 .
  • Ooya , T. and Yui , N. 1997 . Synthesis and characterization of biodegradable polyrotaxane as a novel supramolecular‐structured drug carrier . Journal of Biomaterials Science‐Polymer Edition , 8 : 437 – 455 .
  • Fujita , H. , Ooya , T. , Kurisawa , M. , Mori , H. , Terano , M. and Yui , N. 1996 . Thermally switchable polyrotaxane as a model of stimuli‐responsive supramolecules for nano‐scale devices . Macromolecular Rapid Communications , 17 : 509 – 515 .
  • Fujita , H. , Ooya , T. and Yui , N. 1999 . Synthesis and characterization of a polyrotaxane consisting of beta‐cyclodextrins and a poly(ethylene glycol) poly(propylene glycol) triblock copolymer . Macromolecular Chemistry and Physics , 200 : 706 – 713 .
  • Liu , Y. , Yang , Y. W. , Chen , Y. and Zou , H. X. 2005 . Polyrotaxane with cyclodextrins as stoppers and its assembly behavior . Macromolecules , 38 : 5838 – 5840 .
  • Zhao , T. J. and Beckham , H. W. 2003 . Direct synthesis of cyclodextrin‐rotaxanated poly(ethylene glycol)s and their self‐diffusion behavior in dilute solution . Macromolecules , 36 : 9859 – 9865 .
  • Harada , A. , Li , J. and Kamachi , M. 1997 . Non‐ionic 2 rotaxanes containing methylated alpha‐cyclodextrins . Chemical Communications , : 1413 – 1414 .
  • Araki , J. , Zhao , C. M. and Kohzo , I. 2005 . Efficient production of polyrotaxanes from alpha‐cyclodextrin and poly(ethylene glycol) . Macromolecules , 38 : 7524 – 7527 .
  • Yu , H. Q. , Feng , Z. G. , Zhang , A. Y. , Hou , D. D. and Sun , L. G. 2006 . Novel triblock copolymers synthesized via radical telomerization of N‐isopropylacrylamide in the presence of polypseudorotaxanes made from thiolated PEG and alpha‐CDs . Polymer , 47 : 6066 – 6071 .
  • Loethen , S. , Ooya , T. , Choi , H. S. , Yui , N. and Thompson , D. H. 2006 . Synthesis, characterization, and pH‐triggered dethreading of alpha‐cyclodextrin‐poly(ethylene glycol) polyrotaxanes bearing cleavable endcaps . Biomacromolecules , 7 : 2501 – 2506 .
  • Ooya , T. , Ito , A. and Yui , N. 2005 . Preparation of alpha‐cyclodextrin‐terminated polyrotaxane consisting of beta‐cyclodextrins and pluronic as a building block of a biodegradable network . Macromolecular Bioscience , 5 : 379 – 383 .
  • Choi , H. S. , Ooya , T. and Yui , N. 2006 . One‐pot synthesis of a polyrotaxane via selective threading of a PEI‐b‐PEG‐b‐PEI copolymer . Macromolecular Bioscience , 6 : 420 – 424 .
  • Jarroux , N. , Guegan , P. , Cheradame , H. and Auvray , L. 2005 . High conversion synthesis of pyrene end functionalized polyrotaxane based on poly(ethylene oxide) and alpha‐cyclodextrins . Journal of Physical Chemistry B , 109 : 23816 – 23822 .
  • Okada , M. and Harada , A. 2004 . Preparation of beta‐cyclodextrin polyrotaxane: Photodimerization of pseudo‐polyrotaxane with 2‐anthryl and triphenylmethyl groups at the ends of poly(propylene glycol) . Organic Letters , 6 : 361 – 364 .
  • Wei , H. L. , He , J. Y. , Sun , L. G. , Zhu , K. Q. and Feng , Z. G. 2005 . Gel formation and photopolymerization during supramolecular self‐assemblies of alpha‐CDs with LA‐PEG‐LA copolymer end‐capped with methacryloyl groups . European Polymer Journal , 41 : 948 – 957 .
  • Feng , Z. G. and Zhao , S. P. 2003 . Synthesis and characterization of biodegradable hydrogels based on photopolymerizable acrylate‐terminated CL‐PEG‐CL macromers with supramolecular assemblies of alpha‐cyclodextrins . Polymer , 44 : 5177 – 5186 .
  • Yu , H. Q. , Feng , Z. G. , Zhang , A. Y. , Sun , L. G. and Qian , L. J. 2006 . Synthesis and characterization of three‐dimensional crosslinked networks based on self‐assemly of alpha‐cyclodextrins with thiolated 4‐arm PEG using a three‐step oxidation . Soft Matter , 2 : 343 – 349 .
  • He , L. H. , Huang , J. , Chen , Y. M. and Liu , L. P. 2005 . Inclusion complexation between comblike PEO grafted polymers and alpha‐cyclodextrin . Macromolecules , 38 : 3351 – 3355 .
  • He , L. H. , Huang , J. , Chen , Y. M. , Xu , X. J. and Liu , L. P. 2005 . Inclusion interaction of highly densely PEO grafted polymer brush and alpha‐cyclodextrin . Macromolecules , 38 : 3845 – 3851 .
  • Pang , Y. J. and Ritter , H. 2006 . Novel side‐chain polyrotaxane with cyclodextrin: Syntheses and study of water‐soluble copolymers bearing hydrophobically associative components . Macromolecular Chemistry and Physics , 207 : 201 – 208 .
  • Born , M. , Koch , T. and Ritter , H. 1994 . Side‐chain polyrotaxanes. 2. Functionalized polysulfone with noncovalently anchored cyclodextrins in the side‐chains . Acta Polymerica , 45 : 68 – 72 .
  • Born , M. , Koch , T. and Ritter , H. 1995 . Side‐chain polyrotaxanes. 3. Synthesis, characterization and enzymatically catalyzed degradation of noncovalently anchored cyclodextrines in the side‐chains of poly(Ether‐Ether‐Ketone)S . Macromolecular Chemistry and Physics , 196 : 1761 – 1767 .
  • Born , M. and Ritter , H. 1996 . Topologically unique side‐chain polyrotaxanes based on triacetyl‐beta‐cyclodextrin and a poly(ether sulfone) main chain . Macromolecular Rapid Communications , 17 : 197 – 202 .
  • Sarvothaman , M. K. and Ritter , H. 2004 . Discriminating influence of alpha‐ and methylated beta‐cyclodextrins on complexation and polymerization of diacrylate and dimethacrylate monomers . Macromolecular Rapid Communications , 25 : 1948 – 1952 .
  • Noll , O. and Ritter , H. 1997 . New side‐chain poly(methacryl‐rotaxanes) bearing cyclodextrins as non‐covalently anchored ring components. Chemoenzymatic synthesis and degradation . Macromolecular Rapid Communications , 18 : 53 – 58 .
  • Noll , O. and Ritter , H. 1998 . Synthesis of new side‐chain polyrotaxanes via free radical polymerization of a water‐soluble semi‐rotaxane monomer consisting of 2,6‐dimethyl‐beta‐cyclodextrin and 3‐0‐(11‐acryloylaminoundecanoyl)cholic acid . Macromolecular Chemistry and Physics , 199 : 791 – 794 .
  • Goretzki , C. and Ritter , H. 2002 . Photosensitive polyrotaxanes: New comb‐like polymethacrylamides containing 1,3‐diphenyl‐2‐propen‐1‐one (chalcone) functions and noncovalently bound cyclodextrin in the side‐chains . E‐Polymers , : 019
  • Liu , Y. , Song , Y. , Wang , H. , Zhang , H. Y. and Li , X. Q. 2004 . Bis(polypseudorotaxane)s formed by multiple metallo‐bridged beta‐cyclodextrins and the thermodynamic origin of their molecular aggregation . Macromolecules , 37 : 6370 – 6375 .
  • Liu , Y. , Li , L. , Zhang , H. Y. , Zhao , Y. L. and Wu , X. 2002 . Bis(pseudopolyrotaxane)s possessing copper(II) ions formed by different polymer chains and bis(β‐cyclodextrin)s bridged with a 2,2′‐bipyridine‐4,4′‐dicarboxy tether . Macromolecules , 35 : 9934 – 9938 .
  • Liu , Y. , You , C. C. , Zhang , H. Y. , Kang , S. Z. , Zhu , C. F. and Wang , C. 2001 . Bis(molecular tube)s: Supramolecular assembly of complexes of organoselenium‐bridged beta‐cyclodextrins with platinum(IV) . Nano Letters , 1 : 613 – 616 .
  • Wenz , G. and Keller , B. 1992 . Threading cyclodextrin rings on polymer‐chains . Angewandte Chemie‐International Edition in English , 31 : 197 – 199 .
  • Herrmann , W. , Schneider , M. and Wenz , G. 1997 . Photochemical synthesis of polyrotaxanes from stilbene polymers and cyclodextrins . Angewandte Chemie‐International Edition in English , 36 : 2511 – 2514 .
  • Choi , H. S. , Hirasawa , A. , Ooya , T. , Kajihara , D. , Hohsaka , T. and Yui , N. 2006 . pH‐Sensitive locomotion of cycloclextrins in a block‐selective mobile polyrotaxane . Chemphyschem. , 7 : 1671 – 1673 .
  • Tamura , M. , Gao , D. and Ueno , A. 2001 . A polyrotaxane series containing alpha‐cyclodextrin and naphthalene‐modified alpha‐cyclodextrin as a light‐harvesting antenna system . Chemistry‐A European Journal , 7 : 1390 – 1397 .
  • Tamura , M. , Gao , D. and Ueno , A. 2001 . A series of polyrotaxanes containing alpha‐cyclodextrin and naphthalene‐modified alpha‐cyclodextrin and solvent effects on the fluorescence quenching by terminal units . Journal of the Chemical Society‐Perkin Transactions , 7 : 2012 – 2021 .
  • Ooya , T. , Yamashita , A. , Kurisawa , M. , Sugaya , Y. , Maruyama , A. and Yui , N. 2004 . Effects of polyrotaxane structure on polyion complexation with DNA . Science and Technology of Advanced Materials , 5 : 363 – 369 .
  • Ooya , T. , Akutsu , M. , Kumashiro , Y. and Yui , N. 2005 . Temperature‐controlled erosion of poly(N‐isopropylacrylamide)‐based hydrogels crosslinked by methacrylate‐introduced hydrolyzable polyrotaxane . Science and Technology of Advanced Materials , 6 : 447 – 451 .
  • Okumura , Y. and Ito , K. 2001 . The polyrotaxane gel: A topological gel by figure‐of‐eight cross‐links . Advanced Materials , 13 : 485 – 487 .
  • Araki , J. and Ito , K. 2006 . New solvent for polyrotaxane. I. Dimethylacetamide/lithium chloride (DMAc/LiCl) system for modification of polyrotaxane . Journal of Polymer Science Part A‐Polymer Chemistry , 44 : 532 – 538 .
  • Joung , Y. K. , Sengoku , Y. , Ooya , T. , Park , K. D. and Yui , N. 2005 . Anticoagulant supramolecular‐structured polymers: Synthesis and anti coagulant activity of taurine‐conjugated carboxyethylester‐polyrotaxanes . Science and Technology of Advanced Materials , 6 : 484 – 490 .
  • Tachaboonyakiat , W. , Furubayashi , T. , Katoh , M. , Ooya , T. and Yui , N. 2004 . Novel biodegradable cholesterol‐modified polyrotaxane hydrogels for cartilage regeneration . Journal of Biomaterials Science‐Polymer Edition , 15 : 1389 – 1404 .
  • Araki , J. and Ito , K. 2006 . Polrotaxane derivatives. I. Preparation of modified polyrotaxane derivatives with nonionic functional groups and their solubility in organic solvents . Journal of Polymer Science Part A‐Polymer Chemistry , 44 : 6312 – 6323 .
  • Tamura , M. and Ueno , A. 2000 . Energy transfer and guest responsive fluorescence spectra of polyrotaxane consisting of α‐cyclodextrin bearing naphyl moieties . Bulletin of the Chemical Society of Japan , 73 : 147 – 154 .
  • Dal Park , H. , Lee , W. K. , Ooya , T. , Park , K. D. , Kim , Y. H. and Yui , N. 2002 . Anticoagulant activity of sulfortated polyrotaxanes as blood‐compatible materials . Journal of Biomedical Materials Research , 60 : 186 – 190 .
  • Yui , N. , Ooya , T. and Kumeno , T. 1998 . Effect of biodegradable polyrotaxanes on platelet activation . Bioconjugate Chemistry , 9 : 118 – 125 .
  • Harada , A. and Kamachi , M. 1990 . Complex‐formation between poly(ethylene glycol) and alpha‐cyclodextrin . Macromolecules , 23 : 2821 – 2823 .
  • Harada , A. and Kamachi , M. 1990 . Complex‐formation between cyclodextrin and poly(propylene glycol) . Journal of the Chemical Society‐Chemical Communications , : 1322 – 1323 .
  • Harada , A. , Okada , M. , Kawaguchi , Y. and Kamachi , M. 1999 . Macromolecular recognition: New cyclodextrin polyrotaxanes and molecular tubes . Polymers for Advanced Technologies , 10 : 3 – 12 .
  • Choi , H. S. 2004 . Design of Stimuli‐Responsive Supramolecular Assembly Based on Cooperative Host‐Guest Interactions for Biomedical Applications 269 Japan : Advanced Institute of Science and Technology .
  • Pozuelo , J. , Mendicuti , F. and Mattice , W. L. 1998 . Inclusion complexes of chain molecules with cycloamyloses — III. Molecular dynamics simulations of polyrotaxanes formed by poly(propyleneglycol) and beta‐cyclodextrins . Polymer Journal , 30 : 479 – 484 .
  • Lo Nostro , P. , Lopes , J. R. and Cardelli , C. 2001 . Formation of cyclodextrin‐based polypseudorotaxanes: Solvent effect and kinetic study . Langmuir , 17 : 4610 – 4615 .
  • Ceccato , M. , LoNostro , P. and Baglioni , P. 1997 . Alpha cyclodextrin/polyethylene glycolpolyrotaxane: A study of the threading process . Langmuir , 13 : 2436 – 2439 .
  • Kawaguchi , Y. and Harada , A. 2000 . An electric trap: A new method for entrapping cyclodextrin in a rotaxane structure . Journal of the American Chemical Society , 122 : 3797 – 3798 .
  • Pozuelo , J. , Mendicuti , F. and Mattice , W. L. 1997 . Inclusion complexes of chain molecules with cycloamyloses. 2. Molecular dynamics simulations of polyrotaxanes formed by poly(ethylene glycol) and alpha‐cyclodextrins . Macromolecules , 30 : 3685 – 3690 .
  • Miyake , K. , Yasuda , S. , Harada , A. , Sumaoka , J. , Komiyama , M. and Shigekawa , H. 2003 . Formation process of cyclodextrin necklace—Analysis of hydrogen bonding on a molecular level . Journal of the American Chemical Society , 125 : 5080 – 5085 .
  • Harada , A. and Okada , M. 1999 . Complex formation between hydrophobic polymers and methylated cyclodextrins. Oligo(ethylene) and poly(propylene) . Polymer Journal , 31 : 1095 – 1098 .
  • Okada , M. , Kamachi , M. and Harada , A. 1999 . Preparation and characterization of inclusion complexes between methylated cyclodextrins and poly(tetrahydrofuran) . Macromolecules , 32 : 7202 – 7207 .
  • Okada , M. , Kamachi , M. and Harada , A. 1999 . Preparation and characterization of inclusion complexes of poly(propylene glycol) with methylated cyclodextrins . Journal of Physical Chemistry B , 103 : 2607 – 2613 .
  • Fu , Y. , Liu , L. and Guo , Q. X. 2002 . A theoretical study on the inclusion complexation of cyclodextrins with inorganic cations and anions . Journal of Inclusion Phenomena and Macrocyclic Chemistry , 43 : 223 – 229 .
  • Liu , L. and Guo , Q. X. 2002 . The driving forces in the inclusion complexation of cyclodextrins . Journal of Inclusion Phenomena and Macrocyclic Chemistry , 42 : 1 – 14 .
  • Yasuda , S. , Miyake , K. , Sumaoka , J. , Komiyama , M. and Shigekawa , H. 1999 . Effect of the dipole‐dipole interaction on the self‐assembly of cyclodextrin inclusion complexes . Japanese Journal of Applied Physics Part 1‐Regular Papers Short Notes & Review Papers , 38 : 3888 – 3891 .
  • Lo Nostro , P. , Lopes , J. R. , Ninham , B. W. and Baglioni , P. 2002 . Effect of cations and anions on the formation of polypseudorotaxanes . Journal of Physical Chemistry B , 106 : 2166 – 2174 .
  • Harada , A. 1996 . Preparation and structures of supramolecules between cyclodextrins and polymers . Coordination Chemistry Reviews , 148 : 115 – 133 .
  • Li , J. , Harada , A. and Kamachi , M. 1994 . Sol‐gel transition during inclusion complex‐formation between alpha‐cyclodextrin and high‐molecular‐weight poly(ethylene glycol)S in aqueous‐solution . Polymer Journal , 26 : 1019 – 1026 .
  • Fleury , G. , Brochon , C. , Schlatter , G. , Bonnet , G. , Lapp , A. and Hadziioannou , G. 2005 . Synthesis and characterization of high molecular weight polyrotaxanes: Towards the control over a wide range of threaded alpha‐cyclodextrins . Soft Matter , 1 : 378 – 385 .
  • Udachin , K. A. , Wilson , L. D. and Ripmeester , J. A. 2000 . Solid polyrotaxanes of polyethylene glycol and cyclodextrins: The single crystal X‐ray structure of PEG‐beta‐cyclodextrin . Journal of the American Chemical Society , 122 : 12375 – 12376 .
  • Kamitori , S. , Matsuzaka , O. , Kondo , S. , Muraoka , S. , Okuyama , K. , Noguchi , K. , Okada , M. and Harada , A. 2000 . A novel pseudo‐polyrotaxane structure composed of cyclodextrins and a straight‐chain polymer: Crystal structures of inclusion complexes of beta‐cyclodextrin with poly(trimethylene oxide) and poly(propylene glycol) . Macromolecules , 33 : 1500 – 1502 .
  • Liu , Y. , Zhao , Y. L. , Zhang , H. Y. and Song , H. B. 2003 . Polymeric rotaxane constructed from the inclusion complex of b‐cyclodextrin and 4,4’‐dipyridine by coordination with nickel(ii)Ions . Angewandte Chemie‐International Edition , 42 : 3260 – 3263 .
  • Hwang , M. J. , Bae , H. S. , Kim , S. J. and Jeong , B. 2004 . Polyrotaxane hexagonal microfiber . Macromolecules , 37 : 8820 – 8822 .
  • Topchieva , I. N. , Tonelli , A. E. , Panova , I. G. , Matuchina , E. V. , Kalashnikov , F. A. , Gerasimov , V. I. , Rusa , C. C. , Rusa , M. and Hunt , M. A. 2004 . Two‐phase channel structures based on α‐cyclodextrin‐polyethylene glycol inclusion complexes . Langmuir , 20 : 9036 – 9043 .
  • Harada , A. , Okada , M. , Li , J. and Kamachi , M. 1995 . Preparation and characterization of inclusion complexes of poly(propylene glycol) with cyclodextrins . Macromolecules , 28 : 8406 – 8411 .
  • Ooya , T. , Utsunomiya , H. , Eguchi , M. and Yui , N. 2005 . Rapid binding of concanavalin A and maltose‐polyrotaxane conjugates due to mobile motion of alpha‐cyclodextrins threaded onto a poly (ethylene glycol) . Bioconjugate Chemistry , 16 : 62 – 69 .
  • Zhao , T. J. , Beckham , H. W. and Gibson , H. W. 2003 . Quantitative determination of threading in rotaxanated polymers by diffusion‐ordered NMR spectroscopy . Macromolecules , 36 : 4833 – 4837 .
  • Harada , A. 1997 . “Design and construction of supramolecular architectures consisting of cyclodextrins and polymers” . In Metal Complex Catalysts Supercritical Fluid Polymerization Supramolecular Architecture, Advances in Polymer Science Vol. 133 , 141 – 191 .
  • Ooya , T. , Inoue , D. , Choi , H. S. , Kobayashi , Y. , Loethen , S. , Thompson , D. H. , Ko , Y. H. , Kim , K. and Yui , N. 2006 . pH‐responsive movement of cucurbit[7]uril in a diblock polypseudorotaxane containing dimethyl beta‐cyclodextrin and cucurbit[7]uril . Organic Letters , 8 : 3159 – 3162 .
  • Nelson , A. , Belitsky , J. M. , Vidal , S. , Joiner , C. S. , Baum , L. G. and Stoddart , J. F. 2004 . A self‐assembled multivalent pseudopolyrotaxane for binding galectin‐1 . Journal of the American Chemical Society , 126 : 11914 – 11922 .
  • van den Boogaard , M. , Bonnet , G. , van't Hof , P. , Wang , Y. , Brochon , C. , van Hutten , P. , Lapp , A. and Hadziioannou , G. 2004 . Synthesis of insulated single‐chain semiconducting polymers based on polythiophene, polyfluorene, and beta‐cyclodextrin . Chemistry of Materials , 16 : 4383 – 4385 .
  • Liu , Y. , Zhao , Y. L. , Zhang , H. Y. , Li , X. Y. , Liang , P. , Zhang , X. Z. and Xu , J. J. 2004 . Supramolecular polypseudorotaxane with conjugated polyazomethine prepared directly from two inclusion complexes of beta‐cyclodextrin with tolidine and phthaldehyde . Macromolecules , 37 : 6362 – 6369 .
  • Shigekawa , H. , Miyake , K. , Sumaoka , J. , Harada , A. and Komiyama , M. 2000 . The molecular abacus: STM manipulation of cyclodextrin necklace . Journal of the American Chemical Society , 122 : 5411 – 5412 .
  • Yoshida , K. , Shimomura , T. , Ito , K. and Hayakawa , R. 1999 . Inclusion complex formation of cyclodextrin and polyaniline . Langmuir , 15 : 910 – 913 .
  • Harada , A. , Li , J. and Kamachi , M. 1994 . Preparation and characterization of a polyrotaxane consisting of monodisperse poly(ethylene Glycol) and alpha‐cyclodextrins . Journal of the American Chemical Society , 116 : 3192 – 3196 .
  • Farcas , A. and Grigoras , M. 2001 . Synthesis and characterization of a fully aromatic polyazomethine with main chain rotaxane architecture . High Performance Polymers , 13 : 201 – 210 .
  • Harada , A. , Li , J. , Nakamitsu , T. and Kamachi , M. 1993 . Preparation and characterization of polyrotaxanes containing many threaded alpha‐cyclodextrins . Journal of Organic Chemistry , 58 : 7524 – 7528 .
  • Ooya , T. , Eguchi , M. and Yui , N. 2001 . Enhanced accessibility of peptide substrate toward membrane‐bound metalloexopeptidase by supramolecular structure of polyrotaxane . Biomacromolecules , 2 : 200 – 203 .
  • Zhao , Y. L. , Zhang , H. Y. , Guo , D. S. and Liu , Y. 2006 . Nanoarchitectures constructed from resulting polypseudorotaxanes of the beta‐cyclodextrin/4,4′‐dipyridine inclusion complex with Co2+ and Zn2+ coordination centers . Chemistry of Materials , 18 : 4423 – 4429 .
  • Herrmann , W. , Keller , B. and Wenz , G. 1997 . Kinetics and thermodynamics of the inclusion of ionene‐6,10 in alpha‐cyclodextrin in an aqueous solution . Macromolecules , 30 : 4966 – 4972 .
  • Loveday , D. , Wilkes , G. L. , Bheda , M. C. , Shen , Y. X. and Gibson , H. W. 1995 . Structure‐property relationships in segmented polyviologen ionene rotaxanes . Journal of Macromolecular Science‐Pure and Applied Chemistry , A32 : 1 – 27 .
  • Harada , A. , Adachi , H. , Kawaguchi , Y. , Okada , M. and Kamachi , M. 1996 . Complex formation of cyclodextrins with cationic polymers . Polymer Journal , 28 : 159 – 163 .
  • Duncan , R. 2003 . The dawning era of polymer therapeutics . Nature Reviews Drug Discovery , 2 : 347 – 360 .
  • Kodama , K. , Katayama , Y. , Shoji , Y. and Nakashima , H. 2006 . The features and shortcomings for gene delivery of current non‐viral carriers . Current Medicinal Chemistry , 13 : 2155 – 2161 .
  • Huang , S. W. and Zhuo , R. X. 2003 . Recent progress in polymer‐based gene delivery vectors . Chinese Science Bulletin , 48 : 1304 – 1309 .
  • Choi , H. S. , Ooya , T. , Lee , S. C. , Sasaki , S. , Kurisawa , M. , Uyama , H. and Yui , N. 2004 . Dependence of polypseudorotaxane formation between cationic linear polyethylenimine and cyclodextrins . Macromolecules , 37 : 6705 – 6710 .
  • Huh , K. M. , Ooya , T. , Sasaki , S. and Yui , N. 2001 . Polymer inclusion complex consisting of Poly(epsilon‐lysine) and alpha‐cyclodextrin . Macromolecules , 34 : 2402 – 2404 .
  • Huh , K. M. , Tomita , H. , Ooya , T. , Lee , W. K. , Sasaki , S. and Yui , N. 2002 . pH Dependence of inclusion complexation between cationic poly(epsilon‐lysine) and alpha‐cyclodextrin . Macromolecules , 35 : 3775 – 3777 .
  • Sun , G. B. , Wu , D. C. , Liu , Y. , He , C. B. , Chung , T. S. and Goh , S. H. 2005 . pH‐Controllable cyclic threading/dethreading of polypseudorotaxane obtained from cyclodextrins and poly(amino ester) . Polymer , 46 : 3355 – 3362 .
  • Xiong , X. Y. , Tam , K. C. and Gan , L. H. 2006 . Polymeric nanostructures for drug delivery applications based on pluronic copolymer systems . Journal of Nanoscience and Nanotechnology , 6 : 2638 – 2650 .
  • Kidowaki , M. , Zhao , C. M. , Kataoka , T. and Ito , K. 2006 . Thermoreversible sol‐gel transition of an aqueous solution of polyrotaxane composed of highly methylated alpha‐cyclodextrin and polyethylene glycol . Chemical Communications , : 4102 – 4103 .
  • Hannak , R. B. , Farber , G. , Konrat , R. and Krautler , B. 1997 . An organometallic B‐12‐rotaxane and a B‐12‐dimer, relaxed and loaded forms of a molecular spring . Journal of the American Chemical Society , 119 : 2313 – 2314 .
  • Ooya , T. , Arizono , K. and Yui , N. 2000 . Synthesis and characterization of an oligopeptide‐terminated polyrotaxane as a drug carrier . Polymers for Advanced Technologies , 11 : 642 – 651 .
  • Watanabe , J. , Ooya , T. and Yui , N. 1998 . Preparation and characterization of a polyrotaxane with non‐enzymatically hydrolyzable stoppers . Chemistry Letters , : 1031 – 1032 .
  • Watanabe , J. , Ooya , T. and Yui , N. 1999 . Effect of acetylation of biodegradable polyrotaxanes on its supramolecular dissociation via terminal ester hydrolysis . Journal of Biomaterials Science‐Polymer Edition , 10 : 1275 – 1288 .
  • Thompson , D. H. , Shin , J. W. , Boomer , J. and Kim , J. M. 2004 . Preparation of plasmenylcholine lipids plasmenyl‐type liposome dispersions. Liposomes Pt D . Methods in Enzymology , 387 : 153 – 168 .
  • Kim , J. M. , Shin , J. , Shum , P. and Thompson , D. H. 2001 . Acid‐ and oxidatively‐labile vinyl ether surfactants: Synthesis and drug delivery applications . Journal of Dispersion Science and Technology , 22 : 399 – 407 .
  • Ooya , T. , Choi , H. S. , Yamashita , A. , Yui , N. , Sugaya , Y. , Kano , A. , Maruyama , A. , Akita , H. , Ito , R. , Kogure , K. and Harashima , H. 2006 . Biocleavable polyrotaxane ‐ Plasmid DNA polyplex for enhanced gene delivery . Journal of the American Chemical Society , 128 : 3852 – 3853 .
  • Paradossi , G. , Cavalieri , F. and Chiessi , E. 2006 . Soft condensed matter in pharmaceutical design . Current Pharmaceutical Design , 12 : 1403 – 1419 .
  • Ichi , T. , Watanabe , J. , Ooya , T. and Yui , N. 2001 . Controllable erosion time and profile in poly(ethylene glycol) hydrogels by supramolecular structure of hydrolyzable polyrotaxane . Biomacromolecules , 2 : 204 – 210 .
  • Ichi , T. , Ooya , T. and Yui , N. 2003 . Supramolecular control of ester hydrolysis in poly(ethylene glycol)‐interlocked hydrogels . Macromolecular Bioscience , 3 : 373 – 380 .
  • Watanabe , J. , Ooya , T. and Yui , N. 2000 . Feasibility study of hydrolyzable polyrotaxanes aiming at implantable materials . Journal of Artificial Organs , 3 : 136 – 142 .
  • Watanabe , J. , Ooya , T. , Park , K. D. , Kim , Y. H. and Yui , N. 2000 . Preparation and characterization of poly(ethylene glycol) hydrogels cross‐linked by hydrolyzable polyrotaxane . Journal of Biomaterials Science‐Polymer Edition , 11 : 1333 – 1345 .
  • Watanabe , J. , Ooya , T. , Nitta , K. H. , Park , K. D. , Kim , Y. H. and Yui , N. 2002 . Fibroblast adhesion and proliferation on poly(ethylene glycol) hydrogels crosslinked by hydrolyzable polyrotaxane . Biomaterials , 23 : 4041 – 4048 .
  • Ichi , T. , Nitta , K. , Lee , W. K. , Ooya , T. and Yui , N. 2003 . Preparation of porous hydrolyzable polyrotaxane hydrogels and their erosion behavior . Journal of Biomaterials Science‐Polymer Edition , 14 : 567 – 579 .
  • Lee , W. K. , Ichi , T. , Ooya , T. , Yamamoto , T. , Katoh , M. and Yui , N. 2003 . Novel poly(ethylene glycol) scaffolds crosslinked by hydrolyzable polyrotaxane for cartilage tissue engineering . Journal of Biomedical Materials Research Part A , 67A : 1087 – 1092 .
  • Fujimoto , M. , Isobe , M. , Yamaguchi , S. , Amagasa , T. , Watanabe , A. , Ooya , T. and Yui , N. 2005 . Poly(ethylene glycol) hydrogels cross‐linked by hydrolyzable polyrotaxane containing hydroxyapatite particles as scaffolds for bone regeneration . Journal of Biomaterials Science‐Polymer Edition , 16 : 1611 – 1621 .
  • Zhao , C. M. , Domon , Y. , Okumura , Y. , Okabe , S. , Shibayama , M. and Ito , K. 2005 . Sliding mode of cyclodextrin in polyrotaxane and slide‐ring gel . Journal of Physics‐Condensed Matter , 17 : S2841 – S2846 .
  • Karino , T. , Okumura , Y. , Zhao , C. M. , Kataoka , T. , Ito , K. and Shibayama , M. 2005 . SANS studies on deformation mechanism of slide‐ring gel . Macromolecules , 38 : 6161 – 6167 .
  • Karino , T. , Okumura , Y. , Ito , K. and Shibayama , M. 2004 . SANS studies on spatial inhomogeneities of slide‐ring gels . Macromolecules , 37 : 6177 – 6182 .
  • Ikeda , T. , Hirota , E. , Qoya , T. and Yui , N. 2001 . Thermodynamic analysis of inclusion complexation between alpha‐cyclodextrin‐based molecular tube and sodium alkyl sulfonate . Langmuir , 17 : 234 – 238 .
  • Ooya , T. , Kobayashi , N. , Ichi , T. , Sasaki , S. and Yui , N. 2003 . Hydrogels having tubular alpha‐cyclodextrin structure: effect of naon‐tube structrue on long alkyl chain partions . Science and Technology of Advanced Materials , 4 : 39 – 42 .
  • Wei , H. L. , Yu , H. Q. , Zhang , A. Y. , Sun , L. G. , Hou , D. D. and Feng , Z. G. 2005 . Synthesis and characterization of thermosensitive and supramolecular structured hydrogels . Macromolecules , 38 : 8833 – 8839 .
  • Zhao , S. P. , Zhang , L. M. , Ma , D. , Yang , C. and Yan , L. 2006 . Fabrication of novel supramolecular hydrogels with high mechanical strength and adjustable thermosensitivity . Journal of Physical Chemistry B , 110 : 16503 – 16507 .
  • Huh , K. M. , Ooya , T. , Lee , W. K. , Sasaki , S. , Kwon , I. C. , Jeong , S. Y. and Yui , N. 2001 . Supramolecular‐structured hydrogels showing a reversible phase transition by inclusion complexation between poly(ethylene glycol) grafted dextran and alpha‐cyclodextrin . Macromolecules , 34 : 8657 – 8662 .
  • Zhu , X. Y. , Chen , L. , Yan , D. Y. , Chen , Q. , Yao , Y. F. , Xiao , Y. , Hou , J. and Li , J. Y. 2004 . Supramolecular self‐assembly of inclusion complexes of a multiarm hyperbranched polyether with cyclodextrins . Langmuir , 20 : 484 – 490 .
  • Huang , J. , Ren , L. X. , Zhu , H. and Chen , Y. M. 2006 . Hydrophilic block copolymer aggregation in solution induced by selective threading of cyclodextrins . Macromolecular Chemistry and Physics , 207 : 1764 – 1772 .
  • Davaran , S. , Hanaee , J. , Rashidi , M. R. , Valiolah , F. and Hashemi , M. 2006 . Influence of poly(ethylene glycol)‐alpha‐cyclodextrin complexes on stabilization and transdermal permeation of ascorbic acid . Journal of Biomedical Materials Research Part A , 78A : 590 – 594 .
  • Kamimura , W. , Ooya , T. and Yui , N. 1997 . Interaction of supramolecular assembly with hairless rat stratum corneum . Journal of Controlled Release , 44 : 295 – 299 .
  • Liu , Y. , Zhao , Y. L. , Chen , Y. and Wang , M. 2005 . Supramolecular assembly of gold nanoparticles mediated by polypseudorotaxane with thiolated beta‐cyclodextrin . Macromolecular Rapid Communications , 26 : 401 – 406 .
  • Kim , K. , Jeon , W. S. , Kang , J. K. , Lee , J. W. , Jon , S. Y. , Kim , T. and Kim , K. 2003 . A pseudorotaxane on gold: Formation of self‐assembled monolayers, reversible dethreading and rethreading of the ring, and ion‐gating behavior . Angewandte Chemie‐International Edition , 42 : 2293 – 2296 .
  • Liu , Y. , Liang , P. , Chen , Y. , Zhang , Y. M. , Zheng , J. Y. and Yue , H. 2005 . Interlocked bis(polyrotaxane) of cyclodextrin‐porphyrin systems mediated by fullerenes . Macromolecules , 38 : 9095 – 9099 .
  • Liu , J. , Xu , R. and Kaifer , A. E. 1998 . In situ modification of the surface of gold colloidal particles. Preparation of cyclodextrin‐based rotaxanes supported on gold nanospheres . Langmuir , 14 : 7337 – 7339 .
  • Li , J. , Li , X. , Ni , X. P. , Wang , X. , Li , H. Z. and Leong , K. W. 2006 . Self‐assembled supramolecular hydrogels formed by biodegradable PEO‐PHB‐PEO triblock copolymers and alpha‐cyclodextrin for controlled drug delivery . Biomaterials , 27 : 4132 – 4140 .
  • Li , J. , Li , X. , Zhou , Z. H. , Ni , X. P. and Leong , K. W. 2001 . Formation of supramolecular hydrogels induced by inclusion complexation between pluronics and alpha‐cyclodextrin . Macromolecules , 34 : 7236 – 7237 .
  • Rodriguez‐Perez , A. I. , Rodriguez‐Tenreiro , C. , Alvarez‐Lorenzo , C. , Concheiro , A. and Torres‐Labandeira , J. J. 2006 . Drug solubilization and delivery from cyclodextrin‐pluronic aggregates . Journal of Nanoscience and Nanotechnology , 6 : 3179 – 3186 .
  • Yamashita , A. , Choi , H. S. , Ooya , T. , Yui , N. , Akita , H. , Kogure , K. and Harashima , H. 2006 . Improved cell viability of linear polyethylenimine through gamma‐cyclodextrin inclusion for effective gene delivery . Chembiochem. , 7 : 297 – 302 .
  • Li , J. , Yang , C. , Li , H. , Wang , X. , Goh , S. H. , Ding , J. L. , Wang , D. Y. and Leong , K. W. 2006 . Cationic supramolecules composed of multiple oligoethylenimine‐grafted beta‐cyclodextrins threaded on a polymer chain for efficient gene delivery . Advanced Materials , 18 : 2969 – 2974 .
  • Ooya , T. , Kawashima , T. and Yui , N. 2001 . Synthesis of polyrotaxane‐biotin conjugates and surface plasmon resonance analysis of streptavidin recognition . Biotechnology and Bioprocess Engineering , 6 : 293 – 300 .
  • Yui , N. , Ooya , T. , Kawashima , T. , Saito , Y. , Tamai , I. , Sai , Y. and Tsuji , A. 2002 . Inhibitory effect of supramolecular polyrotaxane‐dipeptide conjugates on digested peptide uptake via intestinal human peptide transporter . Bioconjugate Chemistry , 13 : 582 – 587 .
  • Tamai , I. , Saito , Y. , Sai , Y. , Kawashima , T. , Ooya , T. , Yui , N. and Tsuji , A. 2001 . Retardation of progressive chronic renal disease by polyrotaxane‐dipeptide conjugate that inhibits intestinal peptide transporter PEPT1 . International Symposium on Controlled Release of Bioactive Materials , 28 : 1275 – 1276 .
  • Ooya , I. , Eguchi , M. and Yui , N. 2002 . Design of biodegradable polyrotaxanes for multivalent interaction with biological systems . Kobunshi Ronbunshu , 59 : 734 – 741 .
  • Ooya , T. , Eguchi , M. and Yui , N. 2003 . Supramolecular design for multivalent interaction: Maltose mobility along polyrotaxane enhanced binding with concanavalin A . Journal of the American Chemical Society , 125 : 13016 – 13017 .
  • Eguchi , M. , Ooya , T. and Yui , N. 2004 . Controlling the mechanism of trypsin inhibition by the numbers of alpha‐cyclodextrins and carboxyl groups in carboxyethylester‐polyrotaxanes . Journal of Controlled Release , 96 : 301 – 307 .
  • Ooya , T. , Eguchi , M. , Ozaki , A. and Yui , N. 2002 . Carboxyethylester‐polyrotaxanes as a new calcium chelating polymer: Synthesis, calcium binding and mechanism of trypsin inhibition . International Journal of Pharmaceutics , 242 : 47 – 54 .
  • Nelson , A. and Stoddart , J. F. 2003 . Dynamic multivalent lactosides displayed on cyclodextrin beads dangling from polymer strings . Organic Letters , 5 : 3783 – 3786 .
  • Nakashima , N. , Murakami , H. , Kawamura , M. , Kouso , D. , Narikiyo , Y. , Matsumoto , R. and Okuyama , K. 1999 . Preparation of inclusion complexes of poly(ethylene glycol)‐bearing artificial lipids with alpha‐cyclodextrin and of a poly(rotaxane) based on the complex . Polymer Journal , 31 : 1089 – 1094 .
  • Yui , N. , Suzuki , K. , Okano , T. , Sakurai , Y. , Ishikawa , C. , Fujimoto , K. and Kawaguchi , H. 1993 . Mechanism of cytoplasmic calcium changes in platelets in contact with polystyrene and poly(acrylamide‐co‐methacrylic acid) surfaces . Journal of Biomaterials Science‐Polymer Edition , 4 : 199 – 215 .
  • Yui , N. , Suzuki , K. , Okano , T. , Sakurai , Y. , Nakano , M. , Ishikawa , C. , Fujimoto , K. and Kawaguchi , H. 1995 . Cytoplasmic calcium level and membrane fluidity of platelets contacting poly(acrylamide‐co‐methacrylic acid) particles with different surface‐properties . Journal of Biomaterials Science‐Polymer Edition , 7 : 253 – 264 .
  • Park , H. D. , Lee , W. K. , Ooya , T. , Park , K. D. , Kim , Y. H. and Yui , N. 2003 . In vitro biocompatibility assessment of sulfonated polyrotaxane‐immobilized polyurethane surfaces . Journal of Biomedical Materials Research Part A , 66A : 596 – 604 .
  • Park , H. D. , Bae , J. W. , Park , K. D. , Ooya , T. , Yui , N. , Jang , J. H. , Han , D. K. and Shin , J. W. 2006 . Surface modification of polyurethane using sulfonated PEG grafted polyrotaxane for improved biocompatibility . Macromolecular Research , 14 : 73 – 80 .
  • Lee , W. K. , Kobayashi , J. , Ooya , T. , Park , K. D. and Yui , N. 2002 . Synthesis and characterization of nitric oxide generative polyrotaxane . Journal of Biomaterials Science‐Polymer Edition , 13 : 1153 – 1161 .
  • Goun , E. A. , Pillow , T. H. , Jones , L. R. , Rothbard , J. B. and Wender , P. A. 2006 . Molecular transporters: Synthesis of oligoguanidinium transporters and their application to drug delivery and real‐time imaging . Chembiochem , 7 : 1497 – 1515 .

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.