1,188
Views
102
CrossRef citations to date
0
Altmetric
Original Articles

Bioactive and Therapeutic ROMP Polymers

, &
Pages 419-459 | Received 15 Dec 2006, Accepted 04 Apr 2007, Published online: 02 Aug 2007

References

  • Trimmel , G. , Riegler , S. , Fuchs , G. , Slugovc , C. and Stelzer , F. 2005 . Liquid crystalline polymers by metathesis polymerization . Adv. Polym. Sci. , 176 : 43 – 87 .
  • Buchmeiser , M. R. 2006 . Metathesis polymerization to and from surfaces . Adv. Polym. Sci. , 197 : 137 – 171 .
  • Anderson , A. W. and Merckling , N. G. US Patent 2721189 . 1955 .
  • Eleuterio , H. S. US Patent 3074918 . 1960 .
  • Hérisson , J. L. and Chauvin , Y. 1970 . Catalysis of olefin transformations by tungsten complexes. II. Telomerization of cyclic olefins in the presence of acyclic olefins . Makromol. Chem. , 141 : 161 – 176 .
  • Grubbs , R. H. , Burk , P. L. and Carr , D. D. 1975 . Mechanism of the olefin metathesis reaction . J. Am. Chem. Soc. , 97 : 3265 – 3267 .
  • Grubbs , R. H. , Carr , D. D. , Hoppin , C. and Burk , P. L. 1976 . Consideration of the mechanism of the metal‐catalyzed olefin metathesis reaction . J. Am. Chem. Soc. , 98 : 3478 – 3483 .
  • Katz , T. J. and McGinnis , J. 1975 . Mechanism of the olefin metathesis reaction . J. Am. Chem. Soc. , 97 : 1592 – 1594 .
  • Katz , T. J. and Rothchild , R. 1976 . Mechanism of the olefin metathesis of 2,2′‐divinylbiphenyl . J. Am. Chem. Soc. , 98 : 2519 – 2526 .
  • Schrock , R. , Rocklage , S. , Wengrovius , J. , Rupprecht , G. and Fellmann , J. 1980 . Preparation and characterization of active niobium, tantalum and tungsten metathesis catalysts . J. Mol. Catal. , 8 : 73 – 83 .
  • Casey , C. P. and Burkhardt , T. J. 1974 . Reactions of (diphenylcarbene)pentacarbonyltungsten(0) with alkenes. Role of metal‐carbene complexes in cyclopropanation and olefin metathesis reactions . J. Am. Chem. Soc. , 96 : 7808 – 7809 .
  • Adlhart , C. and Chen , P. 2004 . Mechanism and activity of ruthenium olefin metathesis catalysts: The role of ligands and substrates from a theoretical perspective . J. Am. Chem. Soc. , 126 : 3496 – 3510 .
  • Anslyn , E. V. and Grubbs , R. H. 1987 . Mechanism of titanocene metallacyclobutane cleavage and the nature of the reactive intermediate . J. Am. Chem. Soc. , 109 : 4880 – 4890 .
  • Mocella , M. T. , Busch , M. A. and Muetterties , E. L. 1976 . Olefin metathesis reaction. III. Mechanistic considerations . J. Am. Chem. Soc. , 98 : 1283 – 1285 .
  • Puddephatt , R. J. , Quyser , M. A. and Tipper , C. F. H. 1976 . Easy isomerization of a metallocyclobutane complex, and its relevance to the mechanism of olefin metathesis . J. Chem. Soc., Chem. Commun. , : 626 – 627 .
  • Schrock , R. R. 1974 . Alkylcarbene complex of tantalum by intramolecular α‐hydrogen abstraction . J. Am. Chem. Soc. , 96 : 6796 – 6797 .
  • Schrock , R. R. 1975 . First isolable transition metal methylene complex and analogs. Characterization, mode of decomposition, and some simple reactions . J. Am. Chem. Soc. , 97 : 6577 – 6578 .
  • Howard , T. R. , Lee , J. B. and Grubbs , R. H. 1980 . Titanium metallacarbene‐metallacyclobutane reactions: Stepwise metathesis . J. Am. Chem. Soc. , 102 : 6876 – 6878 .
  • Gilliom , L. R. and Grubbs , R. H. 1986 . Titanacyclobutanes derived from strained, cyclic olefins: The living polymerization of norbornene . J. Am. Chem. Soc. , 108 : 733 – 742 .
  • Riegler , S. , Slugovc , C. , Trimmel , G. and Stelzer , F. 2004 . Block copolymers via ROMP‐awakening the sleeping beauty . Macromol. Symp. , 217 : 231 – 246 .
  • de la Escosura , A. , Martinez‐Diaz , M. V. , Torres , T. , Grubbs , R. H. , Guldi , D. M. , Neugebauer , H. , Winder , C. , Drees , M. and Sariciftci , N. S. 2006 . New donor‐acceptor materials based on random polynorbornenes bearing pendant phthalocyanine and fullerene units . Chem. ‐Asian J. , 1 : 148 – 154 .
  • Bissinger , P. US Patent 904766 . 1999 .
  • Rutenberg , I. M. , Scherman , O. A. , Grubbs , R. H. , Jiang , W. , Garfunkel , E. and Bao , Z. 2004 . Synthesis of polymer dielectric layers for organic thin film transistors via surface‐initiated ring‐opening metathesis polymerization . J. Am. Chem. Soc. , 126 : 4062 – 4063 .
  • Schrock , R. R. , Feldman , J. , Cannizzo , L. F. and Grubbs , R. H. 1987 . Ring‐opening polymerization of norbornene by a living tungsten alkylidene complex . Macromolecules , 20 : 1169 – 1172 .
  • Totland , K. M. , Boyd , T. J. , Lavoie , G. G. , Davis , W. M. and Schrock , R. R. 1996 . Ring‐opening metathesis polymerization with binaphtholate or biphenolate complexes of molybdenum . Macromolecules , 29 : 6114 – 6125 .
  • McConville , D. H. , Wolf , J. R. and Schrock , R. R. 1993 . Synthesis of chiral molybdenum ROMP initiators and all‐cis highly tactic poly(2,3‐(R)‐2‐norbornadiene) (R=CF3 or CO2Me) . J. Am. Chem. Soc. , 115 : 4413 – 4414 .
  • Oskam , J. H. and Schrock , R. R. 1993 . Rotational isomers of molybdenum(VI) alkylidene complexes and cis/trans polymer structure: Investigations in ring‐opening metathesis polymerization . J. Am. Chem. Soc. , 115 : 11831 – 11845 .
  • O'Dell , R. , McConville , D. H. , Hofmeister , G. E. and Schrock , R. R. 1994 . Polymerization of enantiomerically pure 2,3‐dicarboalkoxynorbornadienes and 5,6‐disubstituted norbornenes by well‐characterized molybdenum ring‐opening metathesis polymerization initiators. Direct determination of tacticity in cis, highly tactic and trans, highly tactic polymers . J. Am. Chem. Soc. , 116 : 3414 – 3423 .
  • Coperet , C. , Lefebvre , F. and Basset , J.‐M. 2003 . “ From ill‐defined W alkylidene complexs ” . In Handbook of Metathesis Edited by: Grubbs , R. H. Vol. 1 , 33 – 46 . Weinheim : Wiley‐VCH .
  • Schwab , P. , France , M. B. , Ziller , J. W. and Grubbs , R. H. 1995 . A series of well‐defined metathesis catalysts—synthesis of [RuCl2(:CHR′)(PR3)2] and their reactions . Angew. Chem., Int. Ed. Engl. , 34 : 2039 – 2041 .
  • Schwab , P. , Grubbs , R. H. and Ziller , J. W. 1996 . Synthesis and applications of RuCl2(:CHR′)(PR3)2: The influence of the alkylidene moiety on metathesis activity . J. Am. Chem. Soc. , 118 : 100 – 110 .
  • Trnka , T. M. , Morgan , J. P. , Sanford , M. S. , Wilhelm , T. E. , Scholl , M. , Choi , T.‐L. , Ding , S. , Day , M. W. and Grubbs , R. H. 2003 . Synthesis and activity of ruthenium alkylidene complexes coordinated with phosphine and N‐heterocyclic carbene ligands . J. Am. Chem. Soc. , 125 : 2546 – 2558 .
  • Adlhart , C. and Chen , P. 2003 . Comparing intrinsic reactivities of the first‐ and second‐generation ruthenium metathesis catalysts in the gas phase . Helv. Chim. Acta , 86 : 941 – 949 .
  • Frenzel , U. , Nuyken , O. , Kohl , F. J. , Schattenmann , W. C. , Weskamp , T. and Herrmann , W. A. 1999 . Ring‐opening metathesis polymerization using new ruthenium alkylidene complexes with N‐heterocyclic carbene ligands . Polym. Mater. Sci. Eng. , 80 : 135 – 136 .
  • Straub , B. F. 2005 . Origin of the high activity of second‐generation Grubbs catalysts . Angew. Chem., Int. Ed. Engl. , 44 : 5974 – 8 .
  • Slugovc , C. 2004 . The ring opening metathesis polymerisation toolbox . Macromol. Rapid Commun. , 25 : 1283 – 1297 .
  • Frenzel , U. and Nuyken , O. 2002 . Ruthenium‐based metathesis initiators: Development and use in ring‐opening metathesis polymerization . J. Polym. Sci., Part A: Polym. Chem. , 40 : 2895 – 2916 .
  • Love , J. A. , Morgan , J. P. , Trnka , T. M. and Grubbs , R. H. 2002 . A practical and highly active ruthenium‐based catalyst that effects the cross metathesis of acrylonitrile . Angew. Chem., Int. Ed. , 41 : 4035 – 4037 .
  • Black , G. , Maher , D. and Risse , W. 2003 . “ Living ring‐opening olefin metathesis polymerizations ” . In Handbook of Metathesis Edited by: Grubbs , R. H. Vol. 3 , 2 – 71 . Weinheim : Wiley‐VCH .
  • Szwarc , M. 1998 . Living polymers. Their discovery, characterization, and properties . J. Polym. Sci., Part A: Polym. Chem. , 36 : ix
  • Matyjaszewski , K. 1995 . Introduction to living polymerization. Living and/or controlled polymerization . J. Phys. Org. Chem. , 8 : 197 – 207 .
  • Duncan , R. 2006 . Polymer conjugates as anticancer nanomedicines . Nat. Rev. Cancer , 6 : 688 – 701 .
  • Duncan , R. , Ringsdorf , H. and Satchi‐Fainaro , R. 2006 . Polymer therapeutics‐polymers as drugs, drug and protein conjugates and gene delivery systems: Past, present and future opportunities . J. Drug Targeting , 14 : 337 – 341 .
  • Ferrari , M. 2005 . Cancer nanotechnology: Opportunities and challenges . Nat. Rev. Cancer , 5 : 161 – 171 .
  • Haag , R. and Kratz , F. 2006 . Polymer therapeutics: Concepts and applications . Angew. Chem., Int. Ed. , 45 : 1198 – 1215 .
  • Kiessling , L. L. and Owen , R. M. 2003 . “ Synthesis and applications of bioactive polymers generated by ring‐opening metathesis polymerization ” . In Handbook of Metathesis Edited by: Grubbs , R. H. Vol. 3 , 180 – 225 . Weinheim : Wiley‐VCH .
  • Kiessling , L. L. and Strong , L. E. 1998 . Bioactive polymers . Top. Organometallic Chem. , 1 : 199 – 231 .
  • Dragutan , V. and Dimonie , M. 1985 . Olefin Metathesis and Ring‐Opening Polymerization of Cyclo‐Olefins 554 New York : Wiley .
  • Grubbs , R. H. and Novak , B. M. US Patent 4883851 . 1989 .
  • Murdzek , J. S. and Schrock , R. R. 1987 . Low polydispersity homopolymers and block copolymers by ring opening of 5,6‐dicarbomethoxynorbornene . Macromolecules , 20 : 2640 – 2642 .
  • Young , J. W. and Sharpless , K. B. 1988 . The ring‐opening metathesis polymerization of 7‐oxabicyclo[2.2.1]hept‐5‐ene derivatives: A new acyclic polymeric ionophore . Chemtracts: Org. Chem. , 1 : 240 – 242 .
  • Singla Anil , K. , Garg , A. and Aggarwal , D. 2002 . Paclitaxel and its formulations . Int. J. Pharm. , 235 : 179 – 192 .
  • Fawaz , F. , Bonini , F. , Guyot , M. , Lagueny , A. M. , Fessi , H. and Devissaguet , J. P. 1996 . Disposition and protective effect against irritation after intravenous and rectal administration of indomethacin loaded nanocapsules to rabbits . Int. J. Pharm. , 133 : 107 – 115 .
  • Matsumura , Y. and Maeda , H. 1986 . A new concept for macromolecular therapeutics in cancer chemotherapy: Mechanism of tumoritropic accumulation of proteins and the antitumor agent SMANCS . Cancer Res. , 46 : 6387 – 6392 .
  • Maeda , H. , Seymour , L. W. and Miyamoto , Y. 1992 . Conjugates of anticancer agents and polymers: Advantages of macromolecular therapeutics in vivo . Bioconjugate Chem. , 3 : 351 – 362 .
  • Maeda , H. , Wu , J. , Sawa , T. , Matsumura , Y. and Hori , K. 2000 . Tumor vascular permeability and the EPR effect in macromolecular therapeutics. A review . J. Controlled Release , 65 : 271 – 284 .
  • Duncan , R. 2003 . The dawning era of polymer therapeutics . Nat. Rev. Drug Discovery , 2 : 347 – 360 .
  • Chytil , P. , Etrych , T. , Konak , C. , Sirova , M. , Mrkvan , T. , Rihova , B. and Ulbrich , K. 2006 . Properties of HPMA copolymer‐doxorubicin conjugates with pH‐controlled activation: Effect of polymer chain modification . J. Controlled Release , 115 : 26 – 36 .
  • Greco , F. , Vicent , M. J. , Penning , N. A. , Nicholson , R. I. and Duncan , R. 2005 . HPMA copolymer‐aminoglutethimide conjugates inhibit aromatase in MCF‐7 cell lines . J. Drug Targeting , 13 : 459 – 470 .
  • Kovar , M. , Kovar , L. , Subr , V. , Etrych , T. , Ulbrich , K. , Mrkvan , T. , Loucka , J. and Rihova , B. 2004 . HPMA copolymers containing doxorubicin bound by a proteolytically or hydrolytically cleavable bond: Comparison of biological properties in vitro . J. Controlled Release , 99 : 301 – 314 .
  • Rihova , B. 2003 . Antibody‐targeted HPMA copolymer‐bound anthracycline antibiotics . Drugs Future , 28 : 1189 – 1210 .
  • David , A. , Kopeckova , P. , Minko , T. , Rubinstein , A. and Kopecek , J. 2004 . Design of a multivalent galactoside ligand for selective targeting of HPMA copolymer‐doxorubicin conjugates to human colon cancer cells . Eur. J. Cancer , 40 : 148 – 157 .
  • Jelinkova , M. , Strohalm , J. , Etrych , T. , Ulbrich , K. and Rihova , B. 2003 . Starlike vs. classic macromolecular prodrugs: Two different antibody‐targeted HPMA copolymers of doxorubicin studied in vitro and in vivo as potential anticancer drugs . Pharm. Res. , 20 : 1558 – 1564 .
  • Watson , K. J. , Anderson , D. R. and Nguyen , S. T. 2001 . Toward polymeric anticancer drug cocktails from ring‐opening metathesis polymerization . Macromolecules , 34 : 3507 – 3509 .
  • Olsen , N. V. , Jensen , N. G. , Hansen , J. M. , Christensen , N. J. , Fogh‐Andersen , N. and Kanstrup , I.‐L. 1999 . Non‐steroidal anti‐inflammatory drugs and renal response to exercise: A comparison of indomethacin and nabumetone . Clin. Sci. , 97 : 457 – 465 .
  • Golab , J. , Kozar , K. , Kaminski , R. , Czajka , A. , Marczak , M. , Switaj , T. , Giermasz , A. , Stoklosa , T. , Lasek , W. , Zagozdzon , R. , Mucha , K. and Jakobisiak , M. 2000 . Interleukin 12 and indomethacin exert a synergistic, angiogenesis‐dependent antitumor activity in mice . Life Sci. , 66 : 1223 – 1230 .
  • Kashiyama , E. , Hutchinson , I. , Chua , M.‐S. , Stinson , S. F. , Phillips , L. R. , Kaur , G. , Sausville , E. A. , Bradshaw , T. D. , Westwell , A. D. and Stevens , M. F. G. 1999 . Antitumor benzothiazoles. 8. Synthesis, metabolic formation, and biological properties of the C‐ and N‐oxidation products of antitumor 2‐(4‐aminophenyl)benzothiazoles . J. Med. Chem. , 42 : 4172 – 4184 .
  • Beyer , U. , Roth , T. , Schumacher , P. , Maier , G. , Unold , A. , Frahm , A. W. , Fiebig , H. H. , Unger , C. and Kratz , F. 1998 . Synthesis and in vitro efficacy of transferrin conjugates of the anticancer drug chlorambucil . J. Med. Chem. , 41 : 2701 – 2708 .
  • McElwain , T. J. , Toy , J. , Smith , E. , Peckham , M. J. and Austin , D. E. 1977 . A combination of chlorambucil, vinblastine, procarbazine and prednisolone for treatment of Hodgkin's disease . Br. J. Cancer , 36 : 276 – 280 .
  • Helmlinger , G. , Sckell , A. , Dellian , M. , Forbes , N. S. and Jain , R. K. 2002 . Acid production in glycolysis‐impaired tumors provides new insights into tumor metabolism . Clin. Cancer Res. , 8 : 1284 – 1291 .
  • Marshall , T. H. and Akgun , A. 1971 . Specificity of porcine elastase and a‐chymotrypsin. Effect of fatty acid chain length in a homologous series of nitrophenyl esters . J. Biol. Chem. , 246 : 6019 – 6023 .
  • Seymour , L. W. , Ferry , D. R. , Anderson , D. , Hesslewood , S. , Julyan , P. J. , Poyner , R. , Doran , J. , Young , A. M. , Burtles , S. and Kerr , D. J. 2002 . Hepatic drug targeting: Phase I evaluation of polymer‐bound doxorubicin . J. Clin. Oncol. , 20 : 1668 – 1676 .
  • Nori , A. and Kopecek , J. 2005 . Intracellular targeting of polymer‐bound drugs for cancer chemotherapy . Adv. Drug Delivery Rev. , 57 : 609 – 636 .
  • Allen , T. M. , Hansen , C. , Martin , F. , Redemann , C. and Yau‐Young , A. 1991 . Liposomes containing synthetic lipid derivatives of poly(ethylene glycol) show prolonged circulation half‐lives in vivo . Biochim. Biophys. Acta , 1066 : 29 – 36 .
  • Maeda , H. , Kabanov , A. , Kataoka , K. and Okano , T. 2003 . Polymer Drugs in the Clinical Stage: Advantages and Prospects Edited by: Maeda , H. , Kabanov , A. , Kataoka , K. and Okano , T. 224 New York : Kluwer Academic/Plenum Publishers .
  • Carrillo , A. and Kane , R. S. 2004 . Block copolymer nanoparticles of controlled sizes via ring‐opening metathesis polymerization . J. Polym. Sci., Part A: Polym. Chem. , 42 : 3352 – 3359 .
  • Stubenrauch , K. , Moitzi , C. , Fritz , G. , Glatter , O. , Trimmel , G. and Stelzer , F. 2006 . Precise tuning of micelle, core, and shell size by the composition of amphiphilic block copolymers derived from ROMP investigated by DLS and SAXS . Macromolecules , 39 : 5865 – 5874 .
  • Choucair , A. and Eisenberg , A. 2003 . Interfacial solubilization of model amphiphilic molecules in block copolymer micelles . J. Am. Chem. Soc. , 125 : 11993 – 2000 .
  • Nguyen , D. , Williams , C. E. and Eisenberg , A. 1994 . Block ionomer micelles in solution. 1. Characterization of ionic cores by small‐angle X‐ray scattering . Macromolecules , 27 : 5090 – 5093 .
  • Djordjevic , J. , Barch , M. and Uhrich , K. E. 2005 . Polymeric micelles based on amphiphilic scorpion‐like macromolecules: Novel carriers for water‐insoluble drugs . Pharm. Res. , 22 : 24 – 32 .
  • Wike‐Hooley , J. L. , Haveman , J. and Reinhold , H. S. 1984 . The relevance of tumour pH to the treatment of malignant disease . Radiother. Oncol. , 2 : 343 – 366 .
  • Bertin , P. A. , Watson , K. J. and Nguyen , S. T. 2004 . Indomethacin‐containing nanoparticles derived from amphiphilic polynorbornene: A model ROMP‐based drug encapsulation system . Macromolecules , 37 : 8364 – 8372 .
  • Quemener , D. , Heroguez , V. and Gnanou , Y. 2005 . Synthesis of acid‐sensitive latices by ring‐opening metathesis polymerization . J. Polym. Sci., Part A: Polym. Chem. , 43 : 217 – 229 .
  • Bertin , P. A. , Smith , D. and Nguyen , S. T. 2005 . High‐density doxorubicin‐conjugated polymeric nanoparticles via ring‐opening metathesis polymerization . Chem. Commun. , : 3793 – 3795 .
  • Hortobagyi , G. N. 1997 . Anthracyclines in the treatment of cancer. An overview . Drugs , 54 : 1 – 7 .
  • Smith , D. , Chen , C. K.‐F. and Nguyen , S. T. Unpublished observation
  • Lechardeur , D. and Lukacs Gergely , L. 2002 . Intracellular barriers to non‐viral gene transfer . Curr. Gene Ther. , 2 : 183 – 194 .
  • Cheng , X. , Ming , X. and Croyle , M. A. 2003 . PEGylated adenoviruses for gene delivery to the intestinal epithelium by the oral route . Pharm. Res. , 20 : 1444 – 1451 .
  • Djeha , H. A. , Todryk , S. M. , Pelech , S. , Wrighton , C. J. , Irvine , A. S. , Mountain , A. and Lipinski , K. S. 2005 . Antitumor immune responses mediated by adenoviral GDEPT using nitroreductase/CB1954 is enhanced by high‐level coexpression of heat shock protein 70 . Cancer Gene Ther. , 12 : 560 – 571 .
  • Skog , J. , Edlund , K. , Widegren , B. , Salford , L. G. , Wadell , G. and Mei , Y.‐F. 2004 . Efficient internalization into low‐passage glioma cell lines using adenoviruses other than type 5: An approach for improvement of gene delivery to brain tumors . J. Gen. Virol. , 85 : 2627 – 2638 .
  • Varga , C. M. , Tedford , N. C. , Thomas , M. , Klibanov , A. M. , Griffith , L. G. and Lauffenburger , D. A. 2005 . Quantitative comparison of polyethylenimine formulations and adenoviral vectors in terms of intracellular gene delivery processes . Gene Ther. , 12 : 1023 – 1032 .
  • Ohsaki , M. , Okuda , T. , Wada , A. , Hirayama , T. , Niidome , T. and Aoyagi , H. 2002 . In vitro gene transfection using dendritic poly(L)‐lysine . Bioconjugate Chem. , 13 : 510 – 517 .
  • Trubetskoy , V. S. , Torchilin , V. P. , Kennel , S. J. and Huang , L. 1992 . Use of N‐terminal modified poly(L)‐lysine‐antibody conjugate as a carrier for targeted gene delivery in mouse lung endothelial cells . Bioconjugate Chem. , 3 : 323 – 327 .
  • Choi , Y. H. , Liu , F. , Park , J. S. and Kim , S. W. 1998 . Lactose‐poly(ethylene glycol)‐grafted poly‐(L)‐lysine as hepatoma cell‐targeted gene carrier . Bioconjugate Chem. , 9 : 708 – 718 .
  • Shima , S. and Sakai , H. 1977 . Polylysine produced by Streptomyces . Agric. Biol. Chem. , 41 : 1807 – 1809 .
  • Deming , T. J. 2000 . Living polymerization of α‐amino acid‐N‐carboxyanhydrides . J. Polym. Sci., Part A: Polym. Chem. , 38 : 3011 – 3018 .
  • Lv , H. , Zhang , S. , Wang , B. , Cui , S. and Yan , J. 2006 . Toxicity of cationic lipids and cationic polymers in gene delivery . J. Controlled Release , 114 : 100 – 109 .
  • Asgatay , S. , Franceschi‐Messant , S. , Perez , E. , Vicendo , P. , Rico‐Lattes , I. , Phez , E. and Rols , M. P. 2004 . Polynorbornene polycationic polymers as gene transfer agents . Int. J. Pharm. , 285 : 121 – 133 .
  • Harned , A. M. , Probst , D. A. , Sheriff , B. A. , Poon , K. W. C. , Hanson , P. R. , Wiethoff , C. and Middaugh , C. R. 2001 . Ring‐opening metathesis polymerization strategies to chemical and biological delivery agents . Polym. Prepr. (Am. Chem. Soc., Div. Polym. Chem.) , 42 : 143 – 144 .
  • Liaw , D.‐J. , Chen , T.‐P. and Huang , C.‐C. 2005 . Self‐assembly aggregation of highly stable copolynorbornenes with amphiphilic architecture via ring‐opening metathesis polymerization . Macromolecules , 38 : 3533 – 3538 .
  • Liaw , D.‐J. , Chen , T.‐P. and Huang , C.‐C. 2005 . Novel active ester‐bridged copolynorbornene materials containing terminal functional hydroxyl, amino, methacryloyl, or ammonium groups via ring‐opening metathesis polymerization . J. Polym. Sci., Part A: Polym. Chem. , 43 : 4233 – 4247 .
  • Liaw , D.‐J. , Huang , C.‐C. and Kang , E.‐T. 2006 . Effects of the architecture and environment on polymeric molecular assemblies of novel amphiphilic diblock copolynorbornenes with narrow polydispersity via living ring‐opening metathesis polymerization . J. Polym. Sci., Part A: Polym. Chem. , 44 : 2901 – 2911 .
  • Allen , T. M. 2002 . Ligand‐targeted therapeutics in anticancer therapy . Nat. Rev. Cancer , 2 : 750 – 763 .
  • Alberts , B. , Johnson , A. , Lewis , J. , Raff , M. , Roberts , K. and Walter , P. 2002 . Molecular Biology of the Cell , 4th Edited by: Alberts , B. , Johnson , A. , Lewis , J. , Raff , M. , Roberts , K. and Walter , P. 1463 New York : Garland Science, Taylor and Francis Group .
  • Panchal , R. G. 1998 . Novel therapeutic strategies to selectively kill cancer cells . Biochem. Pharmacol. , 55 : 247 – 252 .
  • Dyba , M. , Tarasova , N. I. and Michejda , C. J. 2004 . Small molecule toxins targeting tumor receptors . Curr. Pharm. Des. , 10 : 2311 – 2334 .
  • Schrama , D. , Reisfeld , R. A. and Becker , J. C. 2006 . Antibody targeted drugs as cancer therapeutics . Nat. Rev. Drug Discovery , 5 : 147 – 159 .
  • Torchilin , V. P. 2000 . Drug targeting . Eur. J. Pharm. Sci. , 11 : S81 – S91 .
  • Lundberg , P. and Langel , U. 2003 . A brief introduction to cell‐penetrating peptides . J. Mol. Recognit. , 16 : 227 – 233 .
  • Lu , Y. and Low , P. S. 2002 . Folate‐mediated delivery of macromolecular anticancer therapeutic agents . Adv. Drug Delivery Rev. , 54 : 675 – 693 .
  • Gabius , H.‐J. , Siebert , H.‐C. , Andre , S. , Jimenez‐Barbero , J. and Ruediger , H. 2004 . Chemical biology of the sugar code . ChemBioChem , 5 : 740 – 764 .
  • Jaracz , S. , Chen , J. , Kuznetsova , L. V. and Ojima , I. 2005 . Recent advances in tumor‐targeting anticancer drug conjugates . Bioorg. Med. Chem. , 13 : 5043 – 5054 .
  • Dass , C. R. and Choong , P. F. M. 2006 . Targeting of small molecule anticancer drugs to the tumor and its vasculature using cationic liposomes: Lessons from gene therapy . Cancer Cell Intern. , 6 : 17
  • Joralemon , M. J. , O'Reilly , R. K. , Hawker , C. J. and Wooley , K. L. 2005 . Shell click‐crosslinked (SCC) nanoparticles: A new methodology for synthesis and orthogonal functionalization . J. Am. Chem. Soc. , 127 : 16892 – 16899 .
  • Bertin , P. A. , Gibbs , J. M. , Shen , C. K.‐F. , Thaxton , C. S. , Russin , W. A. , Mirkin , C. A. and Nguyen , S. T. 2006 . Multifunctional polymeric nanoparticles from diverse bioactive agents . J. Am. Chem. Soc. , 128 : 4168 – 4169 .
  • Milella , M. , Trisciuoglio , D. , Bruno , T. , Ciuffreda , L. , Mottolese , M. , Cianciulli , A. , Cognetti , F. , Zangemeister‐Wittke , U. , Del Bufalo , D. and Zupi , G. 2004 . Trastuzumab down‐regulates Bcl‐2 expression and potentiates apoptosis induction by Bcl‐2/Bcl‐XL bispecific antisense oligonucleotides in HER‐2 gene‐amplified breast cancer cells . Clin. Cancer Res. , 10 : 7747 – 7756 .
  • Dettmer , C. and Nguyen , S. T. Unpublished result
  • Owen , R. M. , Gestwicki , J. E. , Young , T. and Kiessling , L. L. 2002 . Synthesis and applications of end‐labeled neoglycopolymers . Org. Lett. , 4 : 2293 – 2296 .
  • Allen , M. J. , Raines , R. T. and Kiessling , L. L. 2006 . Contrast agents for magnetic resonance imaging synthesized with ring‐opening metathesis polymerization . J. Am. Chem. Soc. , 128 : 6534 – 6535 .
  • Katayama , H. , Fukuse , Y. , Nobuto , Y. , Akamatsu , K. and Ozawa , F. 2003 . Ring‐opening metathesis polymerization using alkenyl sulfides as chain‐transfer agents: Efficient routes to unsymmetrical poly(norbornene)‐based macroinitiators bearing a terminal hydroxy group . Macromolecules , 36 : 7020 – 7026 .
  • Yang , Z.‐Q. , Puffer , E. B. , Pontrello , J. K. and Kiessling , L. L. 2002 . Synthesis of a multivalent display of a CD22‐binding trisaccharide . Carbohydr. Res. , 337 : 1605 – 1613 .
  • Chen , B. , Metera , K. and Sleiman , H. F. 2005 . Biotin‐terminated ruthenium bipyridine ring‐opening metathesis polymerization copolymers: Synthesis and self‐assembly with streptavidin . Macromolecules , 38 : 1084 – 1090 .
  • Wilchek , M. , Bayer Edward , A. and Livnah , O. 2006 . Essentials of biorecognition: The (strept)avidin‐biotin system as a model for protein‐protein and protein‐ligand interaction . Immunol. Lett. , 103 : 27 – 32 .
  • Torchilin , V. P. 2004 . Fluorescence microscopy to follow the targeting of liposomes and micelles to cells and their intracellular fate . Adv. Drug Delivery Rev. , 57 : 95 – 109 .
  • Chen , B. and Sleiman , H. F. 2004 . Ruthenium bipyridine‐containing polymers and block copolymers via ring‐opening metathesis polymerization . Macromolecules , 37 : 5866 – 5872 .
  • Okada , Y. 2001 . Synthesis of peptides by solution methods . Curr. Org. Chem. , 5 : 1 – 43 .
  • Roberts , K. S. and Sampson , N. S. 2004 . A facile synthetic method to prepare fluorescently labeled ROMP polymers . Org. Lett. , 6 : 3253 – 3255 .
  • Gregoriadis , G. and Ryman , B. E. 1971 . Liposomes as carriers of enzymes or drugs: A new approach to the treatment of storage diseases . Biochem. J. , 124 : 58
  • Gillies , E. R. and Frechet , J. M. J. 2005 . pH‐responsive copolymer assemblies for controlled release of doxorubicin . Bioconjugate Chem. , 16 : 361 – 368 .
  • Bontha , S. , Kabanov , A. V. and Bronich , T. K. 2006 . Polymer micelles with cross‐linked ionic cores for delivery of anticancer drugs . J. Controlled Release , 114 : 163 – 174 .
  • Kallinteri , P. , Higgins , S. , Hutcheon , G. A. , St Pourcain , C. B. and Garnett , M. C. 2005 . Novel functionalized biodegradable polymers for nanoparticle drug delivery systems . Biomacromolecules , 6 : 1885 – 1894 .
  • Choi , T.‐L. and Grubbs , R. H. 2003 . Mild one‐step core‐shell micelles formation by living ring‐opening metathesis polymerization . Polym. Prepr. (Am. Chem. Soc., Div. Polym. Chem.) , 44 : 669 – 670 .
  • Kiessling , L. L. , Gestwicki , J. E. and Strong , L. E. 2000 . Synthetic multivalent ligands in the exploration of cell‐surface interactions . Curr. Opin. Chem. Biol. , 4 : 696 – 703 .
  • Kiessling , L. L. , Gestwicki , J. E. and Strong , L. E. 2006 . Synthetic multivalent ligands as probes of signal transduction . Angew. Chem., Int. Ed. , 45 : 2348 – 2368 .
  • Gestwicki , J. E. , Cairo , C. W. , Strong , L. E. , Oetjen , K. A. and Kiessling , L. L. 2002 . Influencing receptor‐ligand binding mechanisms with multivalent ligand architecture . J. Am. Chem. Soc. , 124 : 14922 – 14933 .
  • Mammen , M. , Chio , S.‐K. and Whitesides , G. M. 1998 . Polyvalent interactions in biological systems: Implications for design and use of multivalent ligands and inhibitors . Angew. Chem., Int. Ed. , 37 : 2755 – 2794 .
  • Biagini , S. C. G. , Coles , M. P. , Gibson , V. C. , Giles , M. R. , Marshall , E. L. and North , M. 1998 . Living ring‐opening metathesis polymerization of amino ester functionalized norbornenes . Polymer , 39 : 1007 – 1014 .
  • Biagini , S. C. G. , Davies , R. G. , Gibson , V. C. , Giles , M. R. , Marshall , E. L. , North , M. and Robson , D. A. 1999 . The synthesis and ring‐opening metathesis polymerization of peptide‐functionalized norbornenes . Chem. Commun. , : 235 – 236 .
  • Coles , M. P. , Gibson , V. C. , Mazzariol , L. , North , M. , Teasdale , W. G. , Williams , C. M. and Zamuner , D. 1994 . Amino acid‐derived homochiral polymers via ring‐opening metathesis polymerization . J. Chem. Soc., Chem. Commun. , : 2505 – 2506 .
  • Sutthasupa , S. , Terada , K. , Sanda , F. and Masuda , T. 2006 . Ring‐opening metathesis polymerization of amino acid‐functionalized norbornene derivatives . J. Polym. Sci., Part A: Polym. Chem. , 44 : 5337 – 5343 .
  • Rule , J. D. and Moore , J. S. 2002 . ROMP reactivity of endo‐ and exo‐dicyclopentadiene . Macromolecules , 35 : 7878 – 7882 .
  • Lapinte , V. , Brosse , J.‐C. and Fontaine , L. 2004 . Synthesis and ring‐opening metathesis polymerization (ROMP) reactivity of endo‐ and exo‐norbornenylazlactone using ruthenium catalysts . Macromol. Chem. Phys. , 205 : 824 – 833 .
  • Saiki , I. 1997 . Cell adhesion molecules and cancer metastasis . Jpn. J. Pharmacol. , 75 : 215 – 242 .
  • Maynard , H. D. , Okada , S. Y. and Grubbs , R. H. 2000 . Synthesis of norbornenyl polymers with bioactive oligopeptides by ring‐opening metathesis polymerization . Macromolecules , 33 : 6239 – 6248 .
  • Ruoslahti , E. and Pierschbacher , M. D. 1987 . New perspectives in cell adhesion: RGD and integrins . Science (Washington, DC) , 238 : 491 – 497 .
  • Aota , S. , Nomizu , M. and Yamada , K. M. 1994 . The short amino acid sequence Pro‐His‐Ser‐Arg‐Asn in human fibronectin enhances cell‐adhesive function . J. Biol. Chem. , 269 : 24756 – 24761 .
  • Pierschbacher , M. D. , Polarek , J. W. , Craig , W. S. , Tschopp , J. F. , Sipes , N. J. and Harper , J. R. 1994 . Manipulation of cellular interactions with biomaterials toward a therapeutic outcome: A perspective . J. Cell. Biochem. , 56 : 150 – 154 .
  • Maynard , H. D. , Okada , S. Y. and Grubbs , R. H. 2001 . Inhibition of cell adhesion to fibronectin by oligopeptide‐substituted polynorbornenes . J. Am. Chem. Soc. , 123 : 1275 – 1279 .
  • Roberts , K. S. and Sampson , N. S. 2003 . Increased polymer length of oligopeptide‐substituted polynorbornenes with LiCl . J. Org. Chem. , 68 : 2020 – 2023 .
  • Roberts , K. S. , Konkar , S. and Sampson , N. S. 2003 . Comparison of fertilinb‐peptide‐substituted polymers and liposomes as inhibitors of in vitro fertilization . ChemBioChem , 4 : 1229 – 1231 .
  • Carrillo , A. , Yanjarappa , M. J. , Gujraty , K. V. and Kane , R. S. 2005 . Biofunctionalized block copolymer nanoparticles based on ring‐opening metathesis polymerization . J. Polym. Sci., Part A: Polym. Chem. , 44 : 928 – 939 .
  • Carrillo , A. , Gujraty , K. V. , Rai , P. R. and Kane , R. S. 2005 . Design of water‐soluble, thiol‐reactive polymers of controlled molecular weight: A novel multivalent scaffold . Nanotechnology , 16 : 416 – 421 .
  • Hancock , R. E. W. 2005 . Mechanisms of action of newer antibiotics for gram‐positive pathogens . Lancet Infect. Dis. , 5 : 209 – 218 .
  • Kiessling , L. L. and Pohl , N. L. 1996 . Strength in numbers: Non‐natural polyvalent carbohydrate derivatives . Chem. Biol. , 3 : 71 – 77 .
  • Arimoto , H. , Nishimura , K. , Hayakawa , I. , Kinumi , T. and Uemura , D. 1999 . Multi‐valent polymer of vancomycin: Enhanced antibacterial activity against VRE . Chem. Commun. , : 1361 – 1362 .
  • Dinger , M. B. and Mol , J. C. 2003 . Degradation of the first‐generation Grubbs metathesis catalyst with primary alcohols, water, and oxygen. Formation and catalytic activity of ruthenium(II) monocarbonyl species . Organometallics , 22 : 1089 – 1095 .
  • Zaehner , H. and Fiedler , H.‐P. 1995 . The need for new antibiotics: Possible ways forward . Symp. Soci. Gen. Microbiol. , 53 : 67 – 84 .
  • Welling , M. M. , Paulusma‐Annema , A. , Balter , H. S. , Pauwels , E. K. J. and Nibbering , P. H. 2000 . Technetium‐99 m labelled antimicrobial peptides discriminate between bacterial infections and sterile inflammations . Eur. J. Nucl. Med. , 27 : 292 – 301 .
  • Darveau , R. P. , Cunningham , M. D. , Seachord , C. L. , Cassiano‐Clough , L. , Cosand , W. L. , Blake , J. and Watkins , C. S. 1991 . ß‐Lactam antibiotics potentiate Magainin II antimicrobial activity in vitro and in vivo . Antimicrob. Agents Chemother. , 35 : 1153 – 1159 .
  • Giacometti , A. , Cirioni , O. , Barchiesi , F. and Scalise , G. 2000 . In vitro activity and killing effect of polycationic peptides on methicillin‐resistant Staphylococcus Aureus and interactions with clinically used antibiotics . Diagn. Microbiol. Infect. Dis. , 38 : 115 – 118 .
  • Haynie , S. L. , Crum , G. A. and Doele , B. A. 1995 . Antimicrobial activities of amphiphilic peptides covalently bonded to a water‐insoluble resin . Antimicrob. Agents Chemother. , 39 : 301 – 307 .
  • Matsuzaki , K. 1999 . Why and how are peptide‐lipid interactions utilized for self‐defense? Magainins and Tachyplesins as archetypes . Biochim. Biophys. Acta, Biomembranes , 1462 : 1 – 10 .
  • Yang , L. , Weiss , T. M. , Lehrer , R. I. and Huang , H. W. 2000 . Crystallization of antimicrobial pores in membranes: Magainin and Protegrin . Biophys. J. , 79 : 2002 – 2009 .
  • Shai , Y. 1999 . Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by α‐helical antimicrobial and cell non‐selective membrane‐lytic peptides . Biochim. Biophys. Acta, Biomembranes , 1462 : 55 – 70 .
  • Yang , S. C. and Benita , S. 2000 . Enhanced absorption and drug targeting by positively charged submicron emulsions . Drug Dev. Res. , 50 : 476 – 486 .
  • Westerhoff , H. V. , Juretic , D. , Hendler , R. W. and Zasloff , M. 1989 . Magainins and the disruption of membrane‐linked free‐energy transduction . Proc. Natl. Acad. Sci. U.S.A. , 86 : 6597 – 6601 .
  • Bradshaw , J. P. 2003 . Cationic antimicrobial peptides: Issues for potential clinical use . BioDrugs , 17 : 233 – 240 .
  • Zasloff , M. 2002 . Antimicrobial peptides of multicellular organisms . Nature (London) , 415 : 389 – 395 .
  • Hancock , R. E. W. , Falla , T. and Brown , M. 1995 . Cationic bactericidal peptides . Adv. Microb. Physiol. , 37 : 135 – 175 .
  • Bechinger , B. , Zasloff , M. and Opella , S. J. 1993 . Structure and orientation of the antibiotic peptide magainin in membranes by solid‐state nuclear magnetic resonance spectroscopy . Protein Sci. , 2 : 2077 – 2084 .
  • Hamuro , Y. , Schneider , J. P. and DeGrado , W. F. 1999 . De Novo design of antibacterial ß‐peptides . J. Am. Chem. Soc. , 121 : 12200 – 12201 .
  • Porter , E. A. , Wang , X. , Lee , H. S. , Weisblum , B. and Gellman , S. H. 2000 . Non‐haemolytic β‐amino‐acid oligomers . Nature (London) , 404 : 565
  • Liu , D. and DeGrado , W. F. 2001 . De Novo design, synthesis, and characterization of antimicrobial ß‐peptides . J. Am. Chem. Soc. , 123 : 7553 – 7559 .
  • Fernandez‐Lopez , S. , Kim , H. S. , Choi , E. C. , Delgado , M. , Granja , J. R. , Khasanov , A. , Kraehenbuehl , K. , Long , G. , Weinberger , D. A. , Wilcoxen , K. M. and Ghadiri , M. R. 2001 . Antibacterial agents based on the cyclic (D,L)‐alpha‐peptide architecture . Nature (London) , 412 : 452 – 455 .
  • Kanazawa , A. , Ikeda , T. and Endo , T. 1993 . Polymeric phosphonium salts as a novel class of cationic biocides. II. Effects of counter anion and molecular weight on antibacterial activity of polymeric phosphonium salts . J. Polym. Sci., Part A: Polym. Chem. , 31 : 1441 – 1447 .
  • Oh , J. E. , Hong , S. Y. and Lee , K. H. 1999 . The comparison of characteristics between membrane‐active antifungal peptide and its pseudopeptides . Bioorg. Med. Chem. , 7 : 2509 – 2515 .
  • Ilker , M. F. , Schule , H. and Coughlin , E. B. 2004 . Modular norbornene derivatives for the preparation of well‐defined amphiphilic polymers: Study of the lipid membrane disruption activities . Macromolecules , 37 : 694 – 700 .
  • Ilker , M. F. , Nuesslein , K. , Tew , G. N. and Coughlin , E. B. 2004 . Tuning the hemolytic and antibacterial activities of amphiphilic polynorbornene derivatives . J. Am. Chem. Soc. , 126 : 15870 – 15875 .
  • Breslow , D. S. 1985 . A polymer that fights cancer . Chemtech , 15 : 302 – 307 .
  • Breslow , D. S. , Edwards , E. I. and Newburg , N. R. 1973 . Divinyl ether‐maleic anhydride (pyran) copolymer used to demonstrate the effect of molecular weight on biological activity . Nature (London) , 246 : 160 – 162 .
  • Munson , A. E. , Regelson , W. , Lawrence , W. Jr. and Wooles , W. R. 1970 . Biphasic response of the reticuloendothelial system (RES) induced by pyran copolymer . RES: J. Reticuloendothelial Soc. (1964–1973) , 7 : 375 – 385 .
  • Tsou , H.‐R. US Patent 616813 . 1994 .
  • Kaneda , Y. , Yamamoto , Y. , Tsunoda , S.‐I. , Kamada , H. , Tsutsumi , Y. , Hirano , T. and Mayumi , T. 1997 . Bioconjugation of tumor necrosis factor‐a with the copolymer of divinyl ether and maleic anhydride increasing its antitumor potency . Biochem. Biophys. Res. Commun. , 239 : 160 – 165 .
  • Panaitescu , L. and Ottenbrite , R. M. 2002 . Biological effects and antitumor activity induced by benzocaine conjugated anionic polymers . J. Bioactive Compatible Polym. , 17 : 357 – 374 .
  • Shimi , I. R. , Zaki , Z. , Shoukry , S. and Medhat , A. M. 1982 . A new antitumor substance, 7‐oxabicyclo‐(2.2.1)‐5‐heptene‐2,3‐dicarboxylic anhydride . Eur. J. Cancer Clin. Oncol. , 18 : 785 – 793 .
  • Goldin , A. 1973 . Animal tumor model. Rationale of screening tests . Des. Clin. Trials Cancer Ther, Proc. Course Clin. Pharmacol. , : 7 – 25 .
  • Lu , S. Y. , Quayle , P. , Heatley , F. , Booth , C. , Yeates , S. G. and Padget , J. C. 1993 . Aqueous ring‐opening metathesis polymerization and copolymerization of 2,3‐dicarboxylic acid anhydride, 2,3‐bis(methoxymethyl), and 2,3‐dicarboxylic acid monomethyl ester derivatives of 7‐oxanorbornene . Eur. Polym. J. , 29 : 269 – 279 .
  • Viswanathan , T. , Jethmalani , J. and Toland , A. 1993 . Homo‐ and copolymers of furan‐maleic anhydride and furan‐dimethylacetylene dicarboxylate adducts via aqueous ring‐opening metathesis polymerization . J. Appl. Polym. Sci. , 47 : 1477 – 1480 .
  • Buchmeiser , M. R. , Atzl , N. and Bonn , G. K. 1997 . Ring‐opening‐metathesis polymerization for the preparation of carboxylic‐acid‐functionalized, high‐capacity polymers for use in separation techniques . J. Am. Chem. Soc. , 119 : 9166 – 9174 .
  • Vygodskii , Y. S. , Shaplov , A. S. , Lozinskaya , E. I. , Filippov , O. A. , Shuvina , E. S. , Bandari , R. and Buchmeiser , M. R. 2006 . Ring‐opening metathsis polymerization (ROMP) in ionic liquids: Scope and limitations . Macromolecules , 39 : 7821 – 7830 .
  • Zhang , L. and Eisenberg , A. 1998 . Formation of crew‐cut aggregates of various morphologies from amphiphilic block copolymers in solution . Polym. Adv. Technol. , 9 : 677 – 699 .
  • Brannon‐Peppas , L. and Blanchette , J. O. 2004 . Nanoparticle and targeted systems for cancer therapy . Adv. Drug Delivery Rev. , 56 : 1649 – 1659 .
  • Muro , S. , Dziubla , T. , Qiu , W. , Leferovich , J. , Cui , X. , Berk , E. and Muzykantov , V. R. 2006 . Endothelial targeting of high‐affinity multivalent polymer nanocarriers directed to intercellular adhesion molecule 1 . J. Pharmacol. Exp. Ther. , 317 : 1161 – 1169 .
  • Ding , B.‐S. , Dziubla , T. , Shuvaev , V. V. , Muro , S. and Muzykantov , V. R. 2006 . Advanced drug delivery systems that target the vascular endothelium . Mol. Interv. , 6 : 98 – 112 .
  • Wagner , E. , Kloeckner , J. and Ogris , M. 2005 . Optimizing polyplexes into synthetic viruses for tumor‐targeted gene therapy . Non‐Viral Gene Ther. , : 237 – 245 .
  • Vicent , M. J. and Duncan , R. 2006 . Polymer conjugates: Nanosized medicines for treating cancer . Trends Biotechnol. , 24 : 39 – 47 .
  • Vasir , J. K. , Reddy , M. K. and Labhasetwar , V. D. 2005 . Nanosystems in drug targeting: Opportunities and challenges . Curr. Nanosci. , 1 : 47 – 64 .
  • Ulbrich , K. , Etrych , T. , Chytil , P. , Jelinkova , M. and Rihova , B. 2004 . Antibody‐targeted polymer‐doxorubicin conjugates with pH‐controlled activation . J. Drug Targeting , 12 : 477 – 489 .
  • Farokhzad , O. C. , Jon , S. , Khademhosseini , A. , Tran , T.‐N. T. , LaVan , D. A. and Langer , R. 2004 . Nanoparticle‐aptamer bioconjugates: A new approach for targeting prostate cancer cells . Cancer Res. , 64 : 7668 – 7672 .
  • Gao , W. , Hagnver , R. , Shah , V. , Xie , W. , Gross , R. A. , Iker , M. F. , Bell , C. , Burke , K. A. and Coughlin , E. B. 2007 . Glycolipid polymer synthesized from natural lactonic sophorolipids by ring‐opening metathesis polymerization . Macromolecules , 40 : 145 – 147 .
  • Hong , S. H. and Grubbs , R. H. 2006 . Highly active water‐soluble olefin metathesis catalyst . J. Am. Chem. Soc. , 128 : 3508 – 3509 .
  • Yao , Q. and Rodriguez Motta , A. 2004 . Immobilization of the Grubbs second‐generation ruthenium‐carbene complex on poly(ethylene glycol): A highly reactive and recyclable catalyst for ring‐closing and cross‐metathesis . Tetrahedron Lett. , 45 : 2447 – 2451 .
  • Zarka , M. T. , Nuyken , O. and Weberskirch , R. 2004 . Polymer‐bound, amphiphilic Hoveyda‐Grubbs‐type catalyst for ring‐closing metathesis in water . Macromol. Rapid Commun. , 25 : 858 – 862 .
  • Breitenkamp , K. and Emrick , T. 2005 . Amphiphilic ruthenium benzylidene metathesis catalyst with PEG‐substituted pyridine ligands . J. Poly. Sci., Part A: Polm. Chem. , 43 : 5429 – 5439 .

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.