1,473
Views
54
CrossRef citations to date
0
Altmetric
REVIEWS

Smart Polymers for Neural Interfaces

, , &
Pages 108-129 | Received 08 Oct 2012, Accepted 19 Nov 2012, Published online: 04 Feb 2013

References

  • Liu , C. , Qin , H. and Mather , P. T. 2007 . Review of progress in shape-memory polymers . Journal of Materials Chemistry , 17 : 1543 – 1558 .
  • Mather , P. , Luo , X. and Rousseau , I. 2009 . Shape memory polymer research . Annual Review of Materials Research , 39 : 445 – 471 .
  • Langer , R. and Tirrell , D. A. 2004 . Designing materials for biology and medicine . Nature , 428 : 487 – 492 .
  • Richter , A. , Paschew , G. , Klatt , S. , Lienig , J. , Arndt , K. F. and Adler , H. J.P. 2008 . Review on hydrogel-based pH sensors and microsensors . Sensors , 8 : 561 – 581 .
  • Blau , A. 2011 . “ Prospects for Neuroprosthetics: Flexible Microelectrode Arrays with Polymer Conductors ” . In Applied Biomedical Engineering, Garguilo, G.D. , Edited by: McEwan , A. 83 – 122 . Croatia : In-Tech .
  • Navarro , X. , Krueger , T. B. , Lago , N. , Micera , S. , Stieglitz , T. and Dario , P. 2005 . A critical review of interfaces with the peripheral nervous system for the control of neuroprostheses and hybrid bionic systems . Journal of the Peripheral Nervous System , 10 : 229 – 258 .
  • Stieglitz , T. 2006 . Neuro-technical interfaces to the central nervous system . Poiesis; Praxis: International Journal of Technology Assessment and Ethics of Science , 4 : 95 – 109 .
  • Lanza , V. and Cook , P. 1960 . Irradiation Induced Elastic Memory of Polymers DTIC: Redwood City, California
  • Nakayama , K. 1990 . Properties and application of shape-memory polymers . Nippon Gomu Kyokaishi(J. Soc. Rubber Ind., Jpn.) , 63 : 529 – 534 .
  • Ikematu , T. , Kishimoto , Y. and Miyamoto , K. 1991 . Shape Memory Polymer Resin, Resin Composition and the Shape Memorizing Molded Product Thereof , Edited by: Office , E. P. Vol. EP0374961 (A3)-1991–01-30 , Japan : Asahi Kasei Kabushiki Kaisha .
  • Shunichi , H. and Hiroshi , F. 1989 . Shape Memory Polymer Foam , Edited by: Office , E. P. Vol. EP0361418 , Japan : Mitsubishi Heavy Ind .
  • Ho , P. S. and Faupel , F. 1988 . Adhesion and deformation study of metal/polymer structures by a stretch deformation method . Applied Physics Letters , 53 : 1602 – 1604 .
  • Tobushi , H. , Hara , H. , Yamada , E. and Hayashi , S. 1996 . Thermomechanical properties in a thin film of shape memory polymer of polyurethane series . Smart Materials and Structures , 5 : 483 – 491 .
  • Kim , B. K. , Lee , S. Y. and Xu , M. 1996 . Polyurethanes having shape memory effects . Polymer , 37 : 5781 – 5793 .
  • Liang , C. , Rogers , C. A. and Malafeew , E. 1997 . Investigation of shape memory polymers and their hybrid composites . Journal of Intelligent Material Systems and Structures , 8 : 380 – 386 .
  • Li , F. , Zhu , W. , Zhang , X. , Zhao , C. and Xu , M. 1999 . Shape memory effect of ethylene-vinyl acetate copolymers . Journal of Applied Polymer Science , 71 : 1063 – 1070 .
  • Lendlein , A. and Kelch , S. 2002 . Shape-memory polymers . Angewandte Chemie-International Edition , 41 : 2034 – 2051 .
  • Rousseau , I. A. and Mather , P. T. 2003 . Shape memory effect exhibited by Smectic-C liquid crystalline elastomers . Journal of the American Chemical Society , 125 : 15300 – 15301 .
  • Liu , Y. , Gall , K. , Dunn , M. L. and McCluskey , P. 2004 . Thermomechanics of shape memory polymer nanocomposites . Mechanics of Materials , 36 : 929 – 940 .
  • Ohki , T. , Ni , Q. Q. and Iwamoto , M. 2004 . Creep and cyclic mechanical properties of composites based on shape memory polymer . Science and Engineering of Composite Materials , 11 : 137 – 147 .
  • Yakacki , C. M. , Willis , S. , Luders , C. and Gall , K. 2008 . Deformation limits in shape-memory polymers . Advanced Engineering Materials , 10 : 112 – 119 .
  • Barot , G. , Rao , I. and Rajagopal , K. 2008 . A thermodynamic framework for the modeling of crystallizable shape memory polymers . International Journal of Engineering Science , 46 : 325 – 351 .
  • Voit , W. , Ware , T. , Dasari , R. R. , Smith , P. , Danz , L. , Simon , D. , Barlow , S. , Marder , S. R. and Gall , K. 2010 . High-strain shape-memory polymers . Advanced Functional Materials , 20 : 162 – 171 .
  • Sokolowski , W. M. and Tan , S. C. 2007 . Advanced self-deployable structures for space applications . Journal of Spacecraft and Rockets , 44 : 750 – 754 .
  • Baer , G. , Wilson , T. S. , Matthews , D. L. and Maitland , D. J. 2007 . Shape-memory behavior of thermally stimulated polyurethane for medical applications . Journal of Applied Polymer Science , 103 : 3882 – 3892 .
  • Di Prima , M. , Lesniewski , M. , Gall , K. , McDowell , D. , Sanderson , T. and Campbell , D. 2007 . Thermo-mechanical behavior of epoxy shape memory polymer foams . Smart Materials and Structures , 16 : 2330 – 2340 .
  • Zheng , X. T. , Zhou , S. B. , Li , X. H. and Weng , H. 2006 . Shape memory properties of poly(D,L-lactide)/hydroxyapatite composites . Biomaterials , 27 : 4288 – 4295 .
  • Safranski , D. L. and Gall , K. 2008 . Effect of chemical structure and crosslinking density on the thermo-mechanical properties and toughness of (meth)acrylate shape memory polymer networks . Polymer , 49 : 4446 – 4455 .
  • Ware , T. , Ellson , G. , Kwasnik , A. , Drewicz , S. , Gall , K. and Voit , W. 2011 . Tough shape-memory polymer-fiber composites . Journal of Reinforced Plastics and Composites , 30 : 371 – 380 .
  • Liu , G. , Ding , X. , Cao , Y. , Zheng , Z. and Peng , Y. 2005 . Novel shape-memory polymer with two transition temperatures . Macromolecular Rapid Communications , 26 : 649 – 652 .
  • Zhao , Y. , Huang , W. and Fu , Y. 2011 . Formation of micro/nano-scale wrinkling patterns atop shape memory polymers . Journal of Micromechanics and Microengineering , 21 : 067007 – 067015 .
  • Chung , T. , Romo-Uribe , A. and Mather , P. T. 2007 . Two-way reversible shape memory in a semicrystalline network . Macromolecules , 41 : 184 – 192 .
  • Zhu , G. , Shuogui , Xu , Jinhua , Wang and Zhang , L. 2006 . Shape memory behaviour of radiation-crosslinked PCL/PMVS blends . Radiation Physics and Chemistry , 75 : 443 – 448 .
  • Nair , D. P. , Cramer , N. B. , Scott , T. F. , Bowman , C. N. and Shandas , R. 2010 . Photopolymerized thiol-ene systems as shape memory polymers . Polymer , 51 : 4383 – 4389 .
  • Smith , K. E. , Garcia , M. , McAnuff , K. , Lamell , R. , Yakacki , C. M. , Griffis , J. , Higgs , G. B. and Gall , K. 2012 . Anterior cruciate ligament fixation: Is radial force a predictor of the pullout strength of soft-tissue interference devices? . The Knee , 19 : 786 – 792 .
  • Ware , T. , Simon , D. , Arreaga-Salas , D. E. , Reeder , J. , Rennaker , R. , Keefer , E. W. and Voit , W. 2012 . Fabrication of responsive, softening neural interfaces . Advanced Functional Materials , 22 : 3470 – 3479 .
  • Behl , M. and Lendlein , A. 2007 . Actively moving polymers . Soft Matter , 3 : 58 – 67 .
  • Maitland , D. J. , Wilson , T. , Metzger , M. and Schumann , D. L. 2002 . “ Laser-activated shape memory polymer microactuators for treating stroke ” . In International Society for Optics and Photonics 394 – 402 .
  • Vialle , G. , Prima , M. D. , Hocking , E. , Gall , K. , Garmestani , H. , Sanderson , T. and Arzberger , S. C. 2009 . Remote activation of nanomagnetite reinforced shape memory polymer foam . Smart Materials and Structures , 18 : 115014 – 115023 .
  • Li , M. H. , Keller , P. , Li , B. , Wang , X. and Brunet , M. 2003 . Light‐driven side‐on nematic elastomer actuators” . Advanced Materials , 15 : 569 – 572 .
  • Xie , T. 2010 . Tunable polymer multi-shape memory effect . Nature , 464 : 267 – 270 .
  • Luo , X. and Mather , P. T. 2010 . Triple-shape polymeric composites (TSPCs) . Advanced Functional Materials , 20 : 2649 – 2656 .
  • Ware , T. , Hearon , K. , Lonnecker , A. , Wooley , K. L. , Maitland , D. J. and Voit , W. 2012 . Triple-shape memory polymers based on self-complementary hydrogen bonding . Macromolecules , 45 : 1062 – 1069 .
  • Behl , M. and Lendlein , A. 2010 . Triple-shape polymers . Journal of Materials Chemistry , 20 : 3335 – 3345 .
  • Feninat , F. E. , Laroche , G. , Fiset , M. and Mantovani , D. 2002 . Shape memory materials for biomedical applications . Advanced Engineering Materials , 4 : 91 – 104 .
  • Lendlein , A. and Langer , R. 2002 . Biodegradable, elastic shape-memory polymers for potential biomedical applications . Science , 296 : 1673 – 1676 .
  • Gall , K. , Yakacki , C. M. , Liu , Y. , Shandas , R. , Willett , N. and Anseth , K. S. 2005 . Thermomechanics of the shape memory effect in polymers for biomedical applications . Journal of Biomedical Materials Research, Part A. , 73A : 339 – 348 .
  • Yakacki , C. M. , Shandas , R. , Safranski , D. , Ortega , A. M. , Sassaman , K. and Gall , K. 2008 . Strong, tailored, biocompatible shape-memory polymer networks . Advanced Functional Materials , 18 : 1 – 8 .
  • Smith , K. E. , Temenoff , J. S. and Gall , K. On the toughness of photopolymerizable (meth)acrylate networks for biomedical applications . Journal of Applied Polymer Science , In Press
  • Buckley , P. R. , McKinley , G. H. , Wilson , T. S. , Small , W. , Benett , W. J. , Bearinger , J. P. , McElfresh , M. W. and Maitland , D. J. 2006 . Inductively heated shape memory polymer for the magnetic actuation of medical devices . Biomedical Engineering, IEEE Transactions , 53 : 2075 – 2083 .
  • Voit , W. , Ware , T. and Gall , K. 2010 . Radiation crosslinked shape-memory polymers . Polymer , 51 : 3551 – 3559 .
  • Hearon , K. , Gall , K. , Ware , T. , Maitland , D. J. , Bearinger , J. P. and Wilson , T. S. 2011 . Post polymerization crosslinked polyurethane shape memory polymers . Journal of Applied Polymer Science , 121 : 144 – 153 .
  • Hearon , K. , Nash , L. D. , Volk , B. L. , Ware , T. , Lewicki , J. P. , Voit , W. E. , Wilson , T. S. and Maitland , D. J. 2012 . Electron beam crosslinked polyurethane shape memory polymers with tunable mechanical properties . Macromolecular Chemistry and Physics ,
  • Davis , K. A. , Burke , K. A. , Mather , P. T. and Henderson , J. H. 2011 . Dynamic cell behavior on shape memory polymer substrates . Biomaterials , 32 : 2285 – 2293 .
  • Neffe , A. T. , Hanh , B. D. , Steuer , S. and Lendlein , A. 2009 . Polymer networks combining controlled drug release, biodegradation, and shape memory capability . Advanced Materials , 21 : 3394 – 3398 .
  • Wischke , C. and Lendlein , A. 2010 . Shape-memory polymers as drug carriers: A multifunctional system . Pharmaceutical Research , 27 : 527 – 529 .
  • Yakacki , C. M. , Shandas , R. , Lanning , C. , Rech , B. , Eckstein , A. and Gall , K. 2007 . Unconstrained recovery characterization of shape-memory polymer networks for cardiovascular applications . Biomaterials , 28 : 2255 – 2263 .
  • Sharp , A. A. , Panchawagh , H. V. , Ortega , A. , Artale , R. , Richardson-Burns , S. , Finch , D. S. , Gall , K. , Mahajan , R. L. and Restrepo , D. 2006 . Toward a self-deploying shape memory polymer neuronal electrode . Journal of Neural Engineering , 3 : L23
  • Ware , T. , Simon , D. , Hearon , K. , Liu , C. , Shah , S. , Reeder , J. , Khodaparast , N. , Kilgard , M. P. , Maitland , D. J. , II , R. L.R. and Voit , W. E. 2012 . Three-dimensional flexible electronics enabled by shape memory polymer substrates for responsive neural interfaces . Macromol.Mater. Eng. , 297 : 1193 – 1202 .
  • Small , I. V.W. , Singhal , P. , Wilson , T. S. and Maitland , D. J. 2010 . Biomedical applications of thermally activated shape memory polymers . Journal of Materials Chemistry , 20 : 3356 – 3366 .
  • Sokolowski , W. , Metcalfe , A. , Hayashi , S. , Yahia , L. H. and Raymond , J. 2007 . Medical applications of shape memory polymers . Biomedical Materials , 2 : S23 – S27 .
  • Yakacki , C. , Shandas , R. , Safranski , D. , Ortega , A. , Sassaman , K. and Gall , K. 2008 . Strong, tailored, biocompatible shape-memory polymer networks . Advanced Functional Materials , 18 : 2428 – 2435 .
  • Cabanlit , M. , Maitland , D. , Wilson , T. , Simon , S. , Wun , T. , Gershwin , M. E. and Water , J. V.d. 2007 . Polyurethane shape-memory polymers demonstrate functional biocompatibility in vitro . Macromolecular Bioscience , 7 : 48 – 55 .
  • Fujita , H. and Ninomiya , K. 1953 . Mechanical properties of concentrated hydrogels of agar-agar. III. Relaxation of stress in compression . Bulletin of the Chemical Society of Japan , 26 : 24 – 29 .
  • Lontz , J. F. 1968 . Static and dynamic stress considerations in the design and use of polymeric materials in prosthetic applications . Annals of the New York Academy of Sciences , 146 : 166 – 192 .
  • Peppas , N. A. and Merrill , E. W. 1977 . Crosslinked poly (vinyl alcohol) hydrogels as swollen elastic networks . Journal of Applied Polymer Science , 21 : 1763 – 1770 .
  • Plashchina , I. , Fomina , O. , Braudo , E. and Tolstoguzov , V. 1979 . Creep study of high-esterified pectin gels . Colloid: Polymer Science , 257 : 1180 – 1187 .
  • Kim , S. and Healy , K. E. 2003 . Synthesis and Characterization of injectable poly(n-isopropylacrylamide- co-acrylic acid) hydrogels with proteolytically degradable cross-links . Biomacromolecules , 4 : 1214 – 1223 .
  • Nakamura , K. and Nakagawa , T. 1975 . Dynamic mechanical properties of poly (2‐hydroxyethyl methacrylate) hydrogels” . Journal of Polymer Science: Polymer Physics Edition , 13 : 2299 – 2311 .
  • Schwartz , Z. and Boyan , B. 1994 . Underlying mechanisms at the bone–biomaterial interface . Journal of Cellular Biochemistry , 56 : 340 – 347 .
  • Pines , E. and Prins , W. 1973 . Structure-property relations of thermoreversible macromolecular hydrogels . Macromolecules , 6 : 888 – 895 .
  • Chang , C. , Duan , B. , Cai , J. and Zhang , L. 2010 . Superabsorbent hydrogels based on cellulose for smart swelling and controllable delivery . European Polymer Journal , 46 : 92 – 100 .
  • Corkhill , P. H. and Tighe , B. J. 1990 . Synthetic hydrogels: 7. High EWC semi-interpenetrating polymer networks based on cellulose esters and N-containing hydrophilic monomers . Polymer , 31 : 1526 – 1537 .
  • Lu , X. and Weiss , R. A. 1995 . Phase behavior of blends of poly(ethylene glycol) and partially neutralized poly(acrylic acid) . Macromolecules , 28 : 3022 – 3029 .
  • Perera , D. I. and Shanks , R. A. 1999 . Swelling and mechanical properties of crosslinked hydrogels containing N‐vinylpyrrolidone” . Polymer International , 39 : 121 – 127 .
  • Ismail , Y. A. , Martínez , J. G. , Harrasi , A. S.A. , Kim , S. J. and Otero , T. F. 2011 . Sensing characteristics of a conducting polymer/hydrogel hybrid microfiber artificial muscle . Sensors and Actuators B: Chemical , 160 : 1180 – 1190 .
  • Poole-Warren , L. , Lovell , N. , Baek , S. and Green , R. 2010 . Development of bioactive conducting polymers for neural interfaces . Expert Review of Medical Devices , 7 : 35 – 49 .
  • Kim , D. H. , Richardson-Burns , S. , Povlich , L. , Abidian , M. , Spanninga , S. , Hendricks , J. and Martin , D. 2008 . “ Indwelling Neural Implants: Strategies for Contending with the In Vivo Environment ” . In Soft, fuzzy, and bioactive conducting polymers for improving the chronic performance of neural prosthetic devices , Edited by: Reichert , W. M. Boca Raton , Florida : CRC Press .
  • Basser , P. J. 1992 . Interstitial pressure, volume, and flow during infusion into brain tissue . Microvascular Research , 44 : 143 – 165 .
  • Kim , D.-H. and Martin , D. C. 2006 . Sustained release of dexamethasone from hydrophilic matrices using PLGA nanoparticles for neural drug delivery . Biomaterials , 27 : 3031 – 3037 .
  • Saha , K. , Keung , A. J. , Irwin , E. F. , Li , Y. , Little , L. , Schaffer , D. V. and Healy , K. E. 2008 . Substrate modulus directs neural stem cell behavior . Biophysical Journal , 95 : 4426 – 4438 .
  • Cullen , D. K. , Wolf , J. A. , Vernekar , V. N. , Vukasinovic , J. and LaPlaca , M. C. 2011 . Neural tissue engineering and biohybridized microsystems for neurobiological investigation in vitro (Part 1) . Critical Reviews™ in Biomedical Engineering , 39 : 201 – 240 .
  • Lu , Y. , Wang , D. , Li , T. , Zhao , X. , Cao , Y. , Yang , H. and Duan , Y. Y. 2009 . Poly(vinyl alcohol)/poly(acrylic acid) hydrogel coatings for improving electrode–neural tissue interface . Biomaterials , 30 : 4143 – 4151 .
  • Rao , S. S. , Han , N. and Winter , J. O. 2011 . Polylysine-modified PEG-based hydrogels to enhance the neuro–electrode interface . Journal of Biomaterials Science, Polymer Edition , 22 : 611 – 625 .
  • Ainslie , K. M. and Desai , T. A. 2012 . Microtechnologies for drug delivery . Long Acting Injections and Implants , : 359 – 381 .
  • Anseth , K. S. , Metters , A. T. , Bryant , S. J. , Martens , P. J. , Elisseeff , J. H. and Bowman , C. N. 2002 . In situ forming degradable networks and their application in tissue engineering and drug delivery . Journal of Controlled Release , 78 : 199 – 209 .
  • Purcell , E. K. 2008 . Cell Scaffold-and Drug-based Strategies for Improving the Integration of Neural Prostheses Into Brain Tissue ProQuest
  • Elisseeff , J. , McIntosh , W. , Fu , K. , Blunk , T. and Langer , R. 2001 . Controlled release of IGF I and TGF 1 in a photopolymerizing hydrogel for cartilage tissue engineering . Journal of Orthopaedic Research , 19 : 1098 – 1104 .
  • Coburn , J. , Gibson , M. , Bandalini , P. A. , Laird , C. , Mao , H. Q. , Moroni , L. , Seliktar , D. and Elisseeff , J. 2011 . Biomimetics of the extracellular matrix: an integrated three-dimensional fiber-hydrogel composite for cartilage tissue engineering . Smart Structures and Systems , 7 : 213
  • Engler , A. J. , Sen , S. , Sweeney , H. L. and Discher , D. E. 2006 . Matrix elasticity directs stem cell lineage specification . Cell , 126 : 677 – 689 .
  • Singh , A. , Zhan , J. , Ye , Z. and Elisseeff , J. H. 2012 . Modular multifunctional poly (ethylene glycol) hydrogels for stem cell differentiation . Advanced Functional Materials ,
  • Hwang , N. S. , Varghese , S. , Li , H. and Elisseeff , J. 2011 . Regulation of osteogenic and chondrogenic differentiation of mesenchymal stem cells in PEG-ECM hydrogels . Cell and Tissue Research , 344 : 499 – 509 .
  • Leipzig , N. D. , Wylie , R. G. , Kim , H. and Shoichet , M. S. 2011 . Differentiation of neural stem cells in three-dimensional growth factor-immobilized chitosan hydrogel scaffolds . Biomaterials , 32 : 57 – 64 .
  • Bahney , C. S. , Hsu , C. W. , Yoo , J. U. , West , J. L. and Johnstone , B. 2011 . A bioresponsive hydrogel tuned to chondrogenesis of human mesenchymal stem cells . The FASEB Journal , 25 : 1486 – 1496 .
  • Rao , L. , Zhou , H. , Li , T. , Li , C. and Duan , Y. Y. 2012 . Polyethylene glycol-containing polyurethane hydrogel coatings for improving the biocompatibility of neural electrodes . Acta Biomaterialia , : 2233 – 2242 .
  • Mikos , A. G. , Herring , S. W. , Ochareon , P. , Elisseeff , J. , Lu , H. H. , Kandel , R. , Schoen , F. J. , Toner , M. , Mooney , D. and Atala , A. 2006 . Engineering complex tissues . Tissue Engineering , 12 : 3307 – 3339 .
  • Lotfi , P. , Garde , K. , Chouhan , A. K. , Bengali , E. and Romero-Ortega , M. I. 2011 . Modality-specific axonal regeneration: Toward selective regenerative neural interfaces . Frontiers in Neuroengineering , 4 : 1 – 11 .
  • He , L. , Lin , D. , Wang , Y. , Xiao , Y. and Che , J. 2011 . Electroactive SWNT/PEGDA hybrid hydrogel coating for bio-electrode interface . Colloids and Surfaces B: Biointerfaces , 87 : 273 – 279 .
  • East , E. , Golding , J. P. and Phillips , J. B. 2012 . “Engineering an integrated cellular interface in three-dimensional hydrogel cultures permits monitoring of reciprocal astrocyte and neuronal responses . Tissue Engineering Part C: Methods , 18 : 526 – 536 .
  • Polikov , V. , Tresco , P. and Reichert , W. 2005 . Response of brain tissue to chronically implanted neural electrodes . Journal of Neuroscience Methods , 148 : 1 – 18 .
  • Cogan , S. F. 2008 . Neural stimulation and recording electrodes . Annual Review of Biomedical Engineering , 10 : 275 – 309 .
  • Prasad , A. , Xue , Q.-S. , Sankar , V. , Nishida , T. , Shaw , G. , Streit , W. J. and Sanchez , J. C. 2012 . Comprehensive characterization and failure modes of tungsten microwire arrays in chronic neural implants . Journal of Neural Engineering , 9 : 056015 – 056035 .
  • Simeral , J. , Kim , S. , Black , M. , Donoghue , J. and Hochberg , L. 2011 . Neural control of cursor trajectory and click by a human with tetraplegia 1000 days after implant of an intracortical microelectrode array . Journal of Neural Engineering , 8 : 025027 – 025050 .
  • Kennedy , P. R. , Bakay , R. A.E. , Moore , M. M. , Adams , K. and Goldwaithe , J. 2000 . Direct control of a computer from the human central nervous system . Rehabilitation Engineering, IEEE Transactions , 8 : 198 – 202 .
  • Donoghue , J. P. 2008 . Bridging the brain to the world: A perspective on neural interface systems . Neuron , 60 : 511 – 521 .
  • Rennaker , R. , Ruyle , A. , Street , S. and Sloan , A. 2005 . An economical multi-channel cortical electrode array for extended periods of recording during behavior . Journal of Neuroscience Methods , 142 : 97 – 105 . 2005
  • Palmer , C. 1978 . A microwire technique for recording single neurons in unrestrained animals . Brain Research Bulletin , 3 : 285 – 289 .
  • Nicolelis , M. A.L. 2007 . Methods for Neural Ensemble Recordings , CRC Press: Boca Raton, Florida .
  • Keefer , E. W. , Botterman , B. R. , Romero , M. I. , Rossi , A. F. and Gross , G. W. 2008 . Carbon nanotube coating improves neuronal recordings . Nature Nanotechnology , 3 : 434 – 439 .
  • Nordhausen , C. T. , Maynard , E. M. and Normann , R. A. 1996 . Single unit recording capabilities of a 100 microelectrode array . Brain Research , 726 : 129 – 140 .
  • Rousche , P. J. and Normann , R. A. 1998 . Chronic recording capability of the Utah Intracortical Electrode Array in cat sensory cortex . Journal of Neuroscience Methods , 82 : 1 – 15 .
  • Jones , K. E. , Campbell , P. K. and Normann , R. A. 1992 . A glass/silicon composite intracortical electrode array . Annals of Biomedical Engineering , 20 : 423 – 437 .
  • Landis , D. M.D. 1994 . The early reactions of non-neuronal cells to brain injury . Annual Review of Neuroscience , 17 : 133 – 151 .
  • Liu , X. , McCreery , D. B. , Carter , R. R. , Bullara , L. A. , Yuen , T. G.H. and Agnew , W. F. 1999 . Stability of the interface between neural tissue and chronically implanted intracortical microelectrodes . Rehabilitation Engineering, IEEE Transactions , 7 : 315 – 326 .
  • Johnson , M. D. , Franklin , R. K. , Scott , K. A. , Brown , R. B. and Kipke , D. R. 2005 . “ Neural probes for concurrent detection of neurochemical and electrophysiological signals in vivo ” . In Engineering in Medicine and Biology Society, 2005. IEEE-EMBS 2005. 27th Annual International Conference 7325 – 7328 .
  • Najafi , K. , Wise , K. D. and Mochizuki , T. 1985 . A high-yield IC-compatible multichannel recording array . Electron Devices, IEEE Transactions , 32 : 1206 – 1211 .
  • Moxon , K. A. , Leiser , S. C. , Gerhardt , G. A. , Barbee , K. A. and Chapin , J. K. 2004 . Ceramic-based multisite electrode arrays for chronic single-neuron recording . Biomedical Engineering, IEEE Transactions , 51 : 647 – 656 .
  • McCarthy , P. , Otto , K. and Rao , M. 2011 . Robust penetrating microelectrodes for neural interfaces realized by titanium micromachining . Biomedical Microdevices , 13 : 503 – 515 .
  • Cogan , S. F. , Edell , D. J. , Guzelian , A. A. , Liu , Y. P. and Edell , R. 2003 . Plasma-enhanced vapor deposited silicon carbide as an implantable dielectric coating . J Biomaterials Res A , 67 : 586 – 567 .
  • Rousche , P. , Pellinen , D. , Pivin , D. , Williams , J. , Vetter , R. and Kirke , D. 2001 . Flexible polyimide-based intracortical electrode arrays with bioactive capability . IEEE Transactions on Biomedical Engineering , 48 : 361 – 371 .
  • Hassler , C. , Boretius , T. and Stieglitz , T. 2011 . Polymers for neural implants . Journal of Polymer Science Part B: Polymer Physics , 49 : 18 – 33 .
  • Rodger , D. C. , Fong , A. J. , Li , W. , Ameri , H. , Ahuja , A. K. , Gutierrez , C. , Lavrov , I. , Zhong , H. , Menon , P. R. , Meng , E. , Burdick , J. W. , Roy , R. R. , Edgerton , V. R. , Weiland , J. D. , Humayun , M. S. and Tai , Y.-C. 2008 . Flexible parylene-based multielectrode array technology for high-density neural stimulation and recording . Sensors and Actuators B: Chemical , 132 : 449 – 460 .
  • Rubehn , B. , Fries , P. and Stieglitz , T. 2009 . “ MEMS-Technology for Large-Scale ” . In Multichannel ECoG-Electrode Array Manufacturing 4th European Conference of the International Federation for Medical and Biological Engineering , Edited by: Sloten , J. , Verdonck , P. , Nyssen , M. and Haueisen , J. Vol. 22 , 2413 – 2416 . Berlin : Springer .
  • Takeuchi , S. , Ziegler , D. , Yoshida , Y. , Mabuchi , K. and Suzuki , T. 2005 . Parylene flexible neural probes integrated with microfluidic channels . Lab Chip , 5 : 519 – 523 .
  • Wise , K. D. , Bhatti , P. T. , Wang , J. and Friedrich , C. R. 2008 . High-density cochlear implants with position sensing and control . Hearing Research , 242 : 22 – 30 .
  • Khang , D. Y. , Rogers , J. A. and Lee , H. H. 2009 . Mechanical buckling: Mechanics, metrology, and stretchable electronics . Advanced Functional Materials , 19 : 1526 – 1536 .
  • Lacour , S. , Benmerah , S. , Tarte , E. , FitzGerald , J. , Serra , J. , McMahon , S. , Fawcett , J. , Graudejus , O. , Yu , Z. and Morrison , B. 2010 . Flexible and stretchable micro-electrodes for in vitro and in vivo neural interfaces . Medical and Biological Engineering and Computing , 48 : 945 – 954 .
  • Kim , D. H. , Ahn , J. H. , Choi , W. M. , Kim , H. S. , Kim , T. H. , Song , J. , Huang , Y. Y. , Liu , Z. , Lu , C. and Rogers , J. A. 2008 . Stretchable and foldable silicon integrated circuits . Science , 320 : 507
  • Nicolelis , M. A.L. and Lebedev , M. A. 2009 . Principles of neural ensemble physiology underlying the operation of brain–machine interfaces . Nature Reviews Neuroscience , 10 : 530 – 540 .
  • Zardetto , V. , Brown , T. M. , Reale , A. and Di Carlo , A. 2011 . Substrates for flexible electronics: A practical investigation on the electrical, film flexibility, optical, temperature, and solvent resistance properties . Journal of Polymer Science Part B: Polymer Physics , 49 : 638 – 648 .
  • Müller , W. W. and Pretsch , T. 2010 . Hydrolytic aging of crystallizable shape memory poly(ester urethane): Effects on the thermo-mechanical properties and visco-elastic modeling . European Polymer Journal , 46 : 1745 – 1758 .
  • Pretsch , T. 2010 . Review on the functional determinants and durability of shape memory polymers . Polymers , 2 : 120 – 158 .
  • Marin , C. and Fernandez , E. 2010 . Biocompatibility of intracortical microelectrodes: current status and future prospects . Frontiers in Neuroengineering , 3 : 1 – 3 .
  • Thelin , J. , Jörntell , H. , Psouni , E. , Garwicz , M. , Schouenborg , J. , Danielsen , N. and Linsmeier , C. E. 2011 . Implant size and fixation mode strongly influence tissue reactions in the CNS . PLoS ONE , 6 : 1 – 10 .
  • Wolf , M. T. , Cham , J. G. , Branchaud , E. A. and Burdick , J. W. “ A miniature robot for isolating and tracking neurons in extracellular cortical recordings ” . In Robotics and Automation, 2008. ICRA 2008. IEEE International Conference 1594 – 1601 .
  • Branchaud , E. A. , Cham , J. G. , Nenadic , Z. , Burdick , J. W. and Andersen , R. A. “ A miniature robot for autonomous single neuron recordings ” . In Robotics and Automation, 2005. ICRA 2005. Proceedings of the 2005 IEEE International Conference 1920 – 1926 .
  • Bartels , J. , Andreasen , D. , Ehirim , P. , Mao , H. , Seibert , S. , Wright , E. J. and Kennedy , P. 2008 . Neurotrophic electrode: Method of assembly and implantation into human motor speech cortex . Journal of Neuroscience Methods , 174 : 168 – 176 .
  • Grill , W. M. , Norman , S. E. and Bellamkonda , R. V. 2009 . Implanted neural interfaces: Biochallenges and engineered solutions . Annual Review of Biomedical Engineering , 11 : 1 – 24 .
  • Azemi , E. , Stauffer , W. R. , Gostock , M. S. , Lagenaur , C. F. and Cui , X. T. 2008 . Surface immobilization of neural adhesion molecule L1 for improving the biocompatibility of chronic neural probes: In vitro characterization . Acta Biomaterialia , 4 : 1208 – 1217 .
  • Yoshida Kozai , T. D. , Langhals , N. B. , Patel , P. R. , Deng , X. , Zhang , H. , Smith , K. L. , Lahann , J. , Kotov , N. A. and Kipke , D. R. 2012 . Ultrasmall implantable composite microelectrodes with bioactive surfaces for chronic neural interfaces . Nat Mater. , Advance online publication
  • Lee , H. , Bellamkonda , R. V. , Sun , W. and Levenston , M. E. 2005 . Biomechanical analysis of silicon microelectrode-induced strain in the brain . Journal of Neural Engineering , 2 : 81–89
  • Subbaroyan , J. , Martin , D. C. and Kipke , D. R. 2005 . A finite-element model of the mechanical effects of implantable microelectrodes in the cerebral cortex . Journal of Neural Engineering , 2 : 103–113
  • Capadona , J. R. , Shanmuganathan , K. , Tyler , D. J. , Rowan , S. J. and Weder , C. 2008 . Stimuli-responsive polymer nanocomposites inspired by the sea cucumber dermis . Science , 319 : 1370–1374
  • Hess , A. , Dunning , J. , Harris , J. , Capadona , J. , Shanmuganathan , K. , Rowan , S. , Weder , C. , Tyler , D. and Zorman , C. 2009 . A bio-inspired, chemo-responsive polymer nanocomposite for mechanically dynamic microsystems . IEEE , : 224 – 227 .
  • Harris , J. , Hess , A. , Rowan , S. , Weder , C. , Zorman , C. , Tyler , D. and Capadona , J. 2011 . In vivo deployment of mechanically adaptive nanocomposites for intracortical microelectrodes . Journal of Neural Engineering , 8 : 046010–046022
  • Hess , A. E. , Capadona , J. R. , Shanmuganathan , K. , Hsu , L. , Rowan , S. J. , Weder , C. , Tyler , D. J. and Zorman , C. A. 2011 . Development of a stimuli-responsive polymer nanocomposite toward biologically optimized, MEMS-based neural probes . Journal of Micromechanics and Microengineering , 21 : 054009–054017
  • Harris , J. P. , Capadona , J. R. , Miller , R. H. , Healy , B. C. , Shanmuganathan , K. , Rowan , S. J. , Weder , C. and Tyler , D. J. 2011 . Mechanically adaptive intracortical implants improve the proximity of neuronal cell bodies . Journal of Neural Engineering , 8 : 066011
  • Schuettler , M. , Stiess , S. , King , B. V. and Suaning , G. J. 2005 . Fabrication of implantable microelectrode arrays by laser cutting of silicone rubber and platinum foil . Journal of Neural Engineering , 2 : S121–S128
  • Azemi , E. , Lagenaur , C. F. and Cui , X. T. 2010 . The surface immobilization of the neural adhesion molecule L1 on neural probes and its effect on neuronal density and gliosis at the probe/tissue interface . Biomaterials ,
  • Zhong , Y. and Bellamkonda , R. V. 2007 . Dexamethasone-coated neural probes elicit attenuated inflammatory response and neuronal loss compared to uncoated neural probes . Brain Research , 1148 : 15 – 27 .
  • Shain , W. , Spataro , L. , Dilgen , J. , Haverstick , K. , Retterer , S. , Isaacson , M. , Saltzman , M. and Turner , J. N. 2003 . Controlling cellular reactive responses around neural prosthetic devices using peripheral and local intervention strategies . Neural Systems and Rehabilitation Engineering, IEEE Transactions , 11 : 186 – 188 .
  • Nuttelman , C. R. , Tripodi , M. C. and Anseth , K. S. 2006 . Dexamethasone-functionalized gels induce osteogenic differentiation of encapsulated hMSCs . Journal of Biomedical Materials Research Part A , 76A : 183 – 195 .
  • Weldon , D. T. , Rogers , S. D. , Ghilardi , J. R. , Finke , M. P. , Cleary , J. P. , O'Hare , E. , Esler , W. P. , Maggio , J. E. and Mantyh , P. W. 1998 . Fibrillar β-amyloid induces microglial phagocytosis, expression of inducible nitric oxide synthase, and loss of a select population of neurons in the rat CNS in vivo . Journal of Neuroscience , 18 : 2161 – 2173 .
  • Lind , G. , Linsmeier , C. E. , Thelin , J. and Schouenborg , J. 2010 . Gelatine-embedded electrodes: A novel biocompatible vehicle allowing implantation of highly flexible microelectrodes . Journal of Neural Engineering , 7 : 046005
  • Hassler , C. , Guy , J. , Nietzschmann , M. , Staiger , J. F. and Stieglitz , T. “ Chronic intracortical implantation of saccharose-coated flexible shaft electrodes into the cortex of rats ” . In Engineering in Medicine and Biology Society,EMBC, 2011 Annual International Conference of the IEEE 644 – 647 .
  • Fan , W. , Maesoon , I. and Euisik , Y. “ A flexible fish-bone-shaped neural probe strengthened by biodegradable silk coating for enhanced biocompatibility ” . In Solid-State Sensors, Actuators and Microsystems Conference (TRANSDUCERS), 2011 16th International 966 – 969 .

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.