920
Views
35
CrossRef citations to date
0
Altmetric
Reviews

Application of Environmentally-Friendly Coatings Toward Inhibiting the Microbially Influenced Corrosion (MIC) of Steel: A Review

, , &
Pages 702-745 | Received 10 Dec 2013, Accepted 14 Jul 2014, Published online: 30 Aug 2014

References

  • Javaherdashti, R. Microbiologically Influenced Corrosion (MIC). Microbiologically Influenced Corrosion: An Engineering Insight; Springer: New York, 2008.
  • Coetser, S.; Cloete, T.E. “Biofouling and biocorrosion in industrial water systems”, Critical reviews in microbiology 2005, 31(4), 213–232.
  • Beech, I.B.; Sunner, J. “Biocorrosion: Towards understanding interactions between biofilms and metals”, Curr. Opin. Biotechnol. 2004, 15(3), 181–186.
  • Beech, I.B. “Corrosion of technical materials in the presence of biofilms: Current understanding and state-of-the art methods of study”, International Biodeterioration & Biodegradation 2004, 53(3), 177–183.
  • Franklin, M.; Nivens, D.; Vass, A.; Mittelman, M.; Jack, R.; Dowling, N.; White, D. “Effect of chlorine and chlorine/bromine biocide treatments on the number and activity of biofilm bacteria and on carbon steel corrosion”, Corrosion 1991, 47(2), 128–134.
  • Guezennec, J. “Cathodic protection and microbially induced corrosion”, International Biodeterioration & Biodegradation 1994, 34(3), 275–288.
  • Chambers, L.D.; Stokes, K.R.; Walsh, F.C.; Wood, R.J. “Modern approaches to marine antifouling coatings”, Surf. Coat. Technol. 2006, 201(6), 3642–3652.
  • Yebra, D.M.; Kiil, S.; Dam-Johansen, K. “Antifouling technology: Past, present and future steps towards efficient and environmentally friendly antifouling coatings”, Prog. Org. Coat. 2004, 50(2), 75–104.
  • Videla, H.A. “Prevention and control of biocorrosion”, International Biodeterioration & Biodegradation 2002, 49(4), 259–270.
  • Karlsson, J.; Ytreberg, E.; Eklund, B. “Toxicity of anti-fouling paints for use on ships and leisure boats to non-target organisms representing three trophic levels”, Environ. Pollut. 2010, 158(3), 681–687.
  • Rajasekar, A.; Ting, Y.-P. “Inhibition of biocorrosion of aluminum 2024 aeronautical alloy by conductive ladder polymer poly[o-phenylenediamine]”, Industrial & Engineering Chemistry Research 2011, 50(4), 2040–2046.
  • Duan, J.; Wu, S.; Zhang, X.; Huang, G.; Du, M.; Hou, B. “Corrosion of carbon steel influenced by anaerobic biofilm in natural seawater”. Electrochimica Acta. 2008, 54(1), 22–28.
  • Javaherdashti, R. “A brief review of general patterns of MIC of carbon steel and biodegradation of concrete”, IUFS Journal of Biology 2009, 68, 65–73.
  • Hamzah, E.; Hussain, M.; Ibrahim, Z.; Abdolahi, A. “Influence of Pseudomonas aeruginosa bacteria on corrosion resistance of 304 stainless steel”, Corrosion Engineering, Science and Technology 2013, 48(2), 116–120.
  • Yuan, S.; Pehkonen, S.; Ting, Y.; Kang, E.; Neoh, K. “Corrosion behavior of type 304 stainless steel in a simulated seawater-based medium in the presence and absence of aerobic Pseudomonas NCIMB 2021 bacteria”, Industrial & Engineering Chemistry Research 2008, 47(9), 3008–3020.
  • Xu, C.; Zhang, Y.; Cheng, G.; Zhu, W. “Localized corrosion behavior of 316L stainless steel in the presence of sulfate-reducing and iron-oxidizing bacteria”, Materials Science and Engineering: A 2007, 443(1), 235–241.
  • Xu, C.; Zhang, Y.; Cheng, G.; Zhu, W. “Pitting corrosion behavior of 316L stainless steel in the media of sulphate-reducing and iron-oxidizing bacteria”, Mater. Charact. 2008, 59(3), 245–255.
  • Beech, I.B. “Sulfate-reducing bacteria in biofilms on metallic materials and corrosion”, Microbiology Today 2003, 30, 115–117.
  • Stoodley, P.; Sauer, K.; Davies, D.; Costerton, J.W. “Biofilms as complex differentiated communities”, Annual Reviews in Microbiology 2002, 56(1), 187–209.
  • Kokare, C.; Chakraborty, S.; Khopade, A.; Mahadik, K. “Biofilm: Importance and applications”, Indian Journal of Biotechnology 2009, 8(2), 159–168.
  • Herrera, L.K.; Videla, H.A. “Role of iron-reducing bacteria in corrosion and protection of carbon steel”, International Biodeterioration & Biodegradation 2009, 63(7), 891–895.
  • Sheng, X.; Ting, Y.-P.; Pehkonen, S.O. “The influence of sulphate-reducing bacteria biofilm on the corrosion of stainless steel AISI 316”, Corros. Sci. 2007, 49(5), 2159–2176.
  • Yuan, S.; Pehkonen, S. “Microbiologically influenced corrosion of 304 stainless steel by aerobic Pseudomonas NCIMB 2021 bacteria: AFM and XPS study”, Colloids and Surfaces B: Biointerfaces 2007, 59(1), 87–99.
  • Sahrani, F.K.; Ibrahim, Z.; Yahya, M.A.; Adibah. “Electrochemical impedance spectroscopy and surface studies of steel corrosion by sulphate-reducing bacteria”, Sains Malaysiana 2009, 38(3), 359–364.
  • Enning, D.; Garrelfs, J. “Corrosion of iron by sulfate-reducing bacteria: New views of an old problem”, Applied and Environmental Microbiology 2014, 80(4), 1226–1236.
  • Javaherdashti, R. “Impact of sulphate-reducing bacteria on the performance of engineering materials”, Appl. Microbiol. Biotechnol. 2011, 91(6), 1507–1517.
  • Lee, W.; Lewandowski, Z.; Nielsen, P.H.; Hamilton, W.A. “Role of sulfate-reducing bacteria in corrosion of mild steel: A review”, Biofouling 1995, 8(3), 165–194.
  • Pillay, C.; Lin, J. “Metal corrosion by aerobic bacteria isolated from stimulated corrosion systems: Effects of additional nitrate sources”, International Biodeterioration & Biodegradation 2013, 83, 158–165.
  • Weber, K.A.; Achenbach, L.A.; Coates, J.D. “Microorganisms pumping iron: anaerobic microbial iron oxidation and reduction”, Nature Reviews Microbiology 2006, 4(10), 752–764.
  • Lee, A.K.; Newman, D.K. “Microbial iron respiration: impacts on corrosion processes”, Applied Microbiology and Biotechnology 2003, 62, 134–139.
  • Lewandowski, Z.; Beyenal, H. “Mechanisms of microbially influenced corrosion”, Marine and Industrial Biofouling, Springer-Verlag, Berlin, 2009. pp. 35–64.
  • Flemming, H.-C.; Wingender, J. “The biofilm matrix”, Nature Reviews Microbiology 2010, 8(9), 623–633.
  • Lichter, J.A.; Van Vliet, K.J.; Rubner, M.F. “Design of antibacterial surfaces and interfaces: Polyelectrolyte multilayers as a multifunctional platform”, Macromolecules 2009, 42(22), 8573–8586.
  • Antizar-Ladislao, B. “Environmental levels, toxicity and human exposure to tributyltin(TBT)-contaminated marine environment: A review”, Environment International 2008, 34(2), 292–308.
  • Konstantinou, I.; Albanis, T. “Worldwide occurrence and effects of antifouling paint booster biocides in the aquatic environment: A review”, Environment International 2004, 30(2), 235–248.
  • Omae, I. “Organotin antifouling paints and their alternatives”, Appl. Organomet. Chem. 2003, 17(2), 81–105.
  • Almeida, E.; Diamantino, T.C.; de Sousa, O. “Marine paints: The particular case of antifouling paints”, Prog. Org. Coat. 2007, 59(1), 2–20.
  • Park, H.-J.; Park, S.; Roh, J.; Kim, S.; Choi, K.; Yi, J.; Kim, Y.; Yoon, J. “Biofilm-inactivating activity of silver nanoparticles: A comparison with silver ions”, Journal of Industrial and Engineering Chemistry 2013, 19(2), 614–619.
  • Jung, W.K.; Koo, H.C.; Kim, K.W.; Shin, S.; Kim, S.H.; Park, Y.H. “Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli”, Applied and Environmental Microbiology 2008, 74(7), 2171–2178.
  • Sotiriou, G.A.; Pratsinis, S.E. “Antibacterial activity of nanosilver ions and particles”, Environmental Science & Technology 2010, 44(14), 5649–5654.
  • AshaRani, P.; Low Kah Mun, G.; Hande, M.P.; Valiyaveettil, S. “Cytotoxicity and genotoxicity of silver nanoparticles in human cells”, ACS Nano 2008, 3(2), 279–290.
  • Chen, X.; Schluesener, H. “Nanosilver: A nanoproduct in medical application”, Toxicol. Lett. 2008, 176(1), 1–12.
  • Gittens, J.E.; Smith, T.J.; Suleiman, R.; Akid, R. “Current and emerging environmentally-friendly systems for fouling control in the marine environment”, Biotechnol. Adv. 2013, 31(8), 1738–1753.
  • Dafforn, K.A.; Lewis, J.A.; Johnston, E.L. “Antifouling strategies: history and regulation, ecological impacts and mitigation”, Marine Pollution Bulletin. 2011, 62(3), 453–465.
  • Qian, P.-Y.; Xu, Y.; Fusetani, N. “Natural products as antifouling compounds: recent progress and future perspectives”, Biofouling 2010, 26(2), 223–234.
  • Regina, V.R.; Søhoel, H.; Lokanathan, A.R.; Bischoff, C.; Kingshott, P.; Revsbech, N.P.; Meyer, R.L. “Entrapment of subtilisin in ceramic sol–gel coating for antifouling applications”, ACS Applied Materials & Interfaces 2012, 4(11), 5915–5921.
  • Olsen, S.M.; Pedersen, L.T.; Laursen, M.; Kiil, S.; Dam-Johansen, K. “Enzyme-based antifouling coatings: a review”, Biofouling 2007, 23(5), 369–383.
  • Kristensen, J.B.; Meyer, R.L.; Laursen, B.S.; Shipovskov, S.; Besenbacher, F.; Poulsen, C.H. “Antifouling enzymes and the biochemistry of marine settlement”, Biotechnol. Adv. 2008, 26(5), 471–481.
  • Charnley, M.; Textor, M.; Acikgoz, C. “Designed polymer structures with antifouling–antimicrobial properties”, React. Funct. Polym. 2011, 71(3), 329–334.
  • Park, K.D.; Kim, Y.S.; Han, D.K.; Kim, Y.H.; Lee, E.H. B.; Suh, H.; Choi, K.S. “Bacterial adhesion on PEG modified polyurethane surfaces”, Biomaterials 1998, 19(7-9), 851–859.
  • Cecchet, F.; De Meersman, B.; Demoustier-Champagne, S.; Nysten, B.; Jonas, A.M. “One step growth of protein antifouling surfaces: monolayers of poly (ethylene oxide) (PEO) derivatives on oxidized and hydrogen-passivated silicon surfaces”, Langmuir 2006, 22(3), 1173–1181.
  • Cheng, G.; Zhang, Z.; Chen, S.; Bryers, J.D.; Jiang, S. “Inhibition of bacterial adhesion and biofilm formation on zwitterionic surfaces”, Biomaterials 2007, 28(29), 4192–4199.
  • Rendueles, O.; Kaplan, J.B.; Ghigo, J.M. “Antibiofilm polysaccharides”, Environ. Microbiol. 2013, 15(2), 334–346.
  • Mansouri, J.; Harrisson, S.; Chen, V. “Strategies for controlling biofouling in membrane filtration systems: Challenges and opportunities”, J. Mater. Chem. 2010, 20(22), 4567–4586.
  • Ekblad, T.; Bergström, G.; Ederth, T.; Conlan, S.L.; Mutton, R.; Clare, A.S.; Wang, S.; Liu, Y.; Zhao, Q.; D’Souza, F. “Poly (ethylene glycol)-containing hydrogel surfaces for antifouling applications in marine and freshwater environments”, Biomacromolecules 2008, 9(10), 2775–2783.
  • Lundberg, P.; Bruin, A.; Klijnstra, J.W.; Nyström, A.M.; Johansson, M.; Malkoch, M.; Hult, A. “Poly (ethylene glycol)-based thiol-ene hydrogel coatings: Curing chemistry, aqueous stability, and potential marine antifouling applications”, ACS Applied Materials & Interfaces 2010, 2(3), 903–912.
  • Buskens, P.; Wouters, M.; Rentrop, C.; Vroon, Z. “A brief review of environmentally benign antifouling and foul-release coatings for marine applications”, Journal of Coatings Technology and Research 2013, 10(1), 29–36.
  • Banerjee, I.; Pangule, R.C.; Kane, R.S. “Antifouling coatings: recent developments in the design of surfaces that prevent fouling by proteins, bacteria, and marine organisms”, Advanced Materials 2011, 23(6), 690–718.
  • Yang, W.J.; Neoh, K.-G.; Kang, E.-T.; Teo, S.L.-M.; Rittschof, D. “Polymer brush coatings for combating marine biofouling”, Prog. Polym. Sci. 2014, 39(5), 1017–1042.
  • Lejars, M.n.; Margaillan, A.; Bressy, C. “Fouling release coatings: a nontoxic alternative to biocidal antifouling coatings”, Chem. Rev. 2012, 112(8), 4347–4390.
  • Wouters, M.; Rentrop, C.; Willemsen, P. “Surface structuring and coating performance: novel biocidefree nanocomposite coatings with anti-fouling and fouling-release properties”, Prog. Org. Coat. 2010, 68(1), 4–11.
  • Akesso, L.; Pettitt, M.E.; Callow, J.A.; Callow, M.E.; Stallard, J.; Teer, D.; Liu, C.; Wang, S.; Zhao, Q.; D’Souza, F. “The potential of nano-structured silicon oxide type coatings deposited by PACVD for control of aquatic biofouling”, Biofouling 2009, 25(1), 55–67.
  • Chen, M.; Qu, Y.; Yang, L.; Gao, H. “Structures and antifouling properties of low surface energy non-toxic antifouling coatings modified by nano-SiO2 powder”, Science In China Series B: Chemistry 2008, 51(9), 848–852.
  • Wang, L.; Liu, M. “Pool boiling fouling and corrosion properties on liquid-phase-deposition TiO2 coatings with copper substrate”, AIChE Journal 2011, 57(7), 1710–1718.
  • Ning, C.; Mingyan, L.; Weidong, Z. “Fouling and Corrosion Properties of SiO2 Coatings on Copper in Geothermal Water”, Industrial & Engineering Chemistry Research 2012, 51(17), 6001–6017.
  • Cai, Y.; Liu, M. “Corrosion behavior of titania films coated by liquid-phase deposition on AISI304 stainless steel substrates”, AIChE Journal 2012, 58(6), 1907–1920.
  • Yan, W.; Lin-lin, W.; Ming-yan, L. “Antifouling and enhancing pool boiling by TiO2 coating surface in nanometer scale thickness”, AIChE Journal 2007, 53(12), 3062–3076.
  • Detty, M.R.; Ciriminna, R.; Bright, F.V.; Pagliaro, M. “Environmentally benign sol–gel antifouling and foul-releasing coatings”, Accounts of Chemical Research 2014, 47(2), 678–687.
  • Grozea, C.M.; Walker, G.C. “Approaches in designing non-toxic polymer surfaces to deter marine biofouling”, Soft Matter 2009, 5(21), 4088–4100.
  • Martinelli, E.; Sarvothaman, M.K.; Galli, G.; Pettitt, M.E.; Callow, M.E.; Callow, J.A.; Conlan, S.L.; Clare, A.S.; Sugiharto, A.B.; Davies, C. “Poly (dimethyl siloxane)(PDMS) network blends of amphiphilic acrylic copolymers with poly (ethylene glycol)-fluoroalkyl side chains for fouling-release coatings. II. Laboratory assays and field immersion trials”, Biofouling 2012, 28(6), 571–582.
  • Wang, Y.; Betts, D.E.; Finlay, J.A.; Brewer, L.; Callow, M.E.; Callow, J.A.; Wendt, D.E.; DeSimone, J.M. “Photocurable amphiphilic perfluoropolyether/poly (ethylene glycol) networks for fouling-release coatings”, Macromolecules 2011, 44(4), 878–885.
  • Wang, Y.; Finlay, J.A.; Betts, D.E.; Merkel, T.J.; Luft, J.C.; Callow, M.E.; Callow, J.A.; DeSimone, J.M. “Amphiphilic co-networks with moisture-induced surface segregation for high-performance nonfouling coatings”, Langmuir 2011, 27(17), 10365–10369.
  • Telegdi, J.; Otmacic-Curkovic, H.; Marusic, K.; Al-Taher, F.; Stupnisec-Lisac, E.; Kálmán, E. “Inhibition of copper corrosion by self-assembled amphiphiles”, Chem. Biochem. Eng. Q. 2007, 21(1), 77–82.
  • Telegdi, J.; Szabó, T.; Al-Taher, F.; Pfeifer, É.; Kuzmann, E.; Vértes, A. “Coatings against corrosion and microbial adhesion”, Mater. Corros. 2010, 61(12), 1000–1007.
  • Liu, T.; Dong, L.; Liu, T.; Yin, Y. “Investigations on reducing microbiologically-influenced corrosion of aluminum by using super-hydrophobic surfaces”, Electrochim. Acta 2010, 55(18), 5281–5285.
  • Genzer, J.; Efimenko, K. “Recent developments in superhydrophobic surfaces and their relevance to marine fouling: A review”, Biofouling 2006, 22(5), 339–360.
  • Zhang, X.; Wang, L.; Levänen, E. “Superhydrophobic surfaces for the reduction of bacterial adhesion”, RSC Advances 2013, 3(30), 12003–12020.
  • Mahalakshmi, P.; Vanithakumari, S.; Gopal, J.; Mudali, U.K.; Raj, B. “Enhancing corrosion and biofouling resistance through superhydrophobic surface modification”, Current Science (Bangalore) 2011, 101(10), 1328–1336.
  • Liu, T.; Yin, Y.S.; Li, L. “Inhibition microbial adherence of superhydrophobic surface on aluminum in seawater”, Advanced Materials Research 2009, 79, 1123–1126.
  • Lewis, K.; Klibanov, A.M. “Surpassing nature: Rational design of sterile-surface materials”, Trends Biotechnol. 2005, 23(7), 343–348.
  • Ye, S.; Majumdar, P.; Chisholm, B.; Stafslien, S.; Chen, Z. “Antifouling and antimicrobial mechanism of tethered quaternary ammonium salts in a cross-linked poly (dimethylsiloxane) matrix studied using sum frequency generation vibrational spectroscopy†”, Langmuir 2010, 26(21), 16455–16462.
  • Qian, L.; Guan, Y.; He, B.; Xiao, H. “Modified guanidine polymers: synthesis and antimicrobial mechanism revealed by AFM”, Polymer 2008, 49(10), 2471–2475.
  • Kanazawa, A.; Ikeda, T.; Endo, T. “Polymeric phosphonium salts as a novel class of cationic biocides. III. Immobilization of phosphonium salts by surface photografting and antibacterial activity of the surface-treated polymer films”, J. Polym. Sci., Part A: Polym. Chem. 1993, 31(6), 1467–1472.
  • Roux, I.l.; Krieg, H.; Yeates, C.; Breytenbach, J. “Use of chitosan as an antifouling agent in a membrane bioreactor”, Journal of Membrane Science 2005, 248(1), 127–136.
  • Glinel, K.; Jonas, A.M.; Jouenne, T.; Leprince, J.; Galas, L.; Huck, W.T. “Antibacterial and antifouling polymer brushes incorporating antimicrobial peptide”, Bioconjugate Chem. 2008, 20(1), 71–77.
  • Xu, F.; Neoh, K.; Kang, E. “Bioactive surfaces and biomaterials via atom transfer radical polymerization”, Prog. Polym. Sci. 2009, 34(8), 719–761.
  • Iarikov, D.D.; Kargar, M.; Sahari, A.; Russel, L.; Gause, K.T.; Behkam, B.; Ducker, W.A. “Antimicrobial surfaces using covalently-bound polyallylamine”, Biomacromolecules 2013, 15(1), 169–176.
  • Ferreira, L.; Zumbuehl, A. “Non-leaching surfaces capable of killing microorganisms on contact”, J. Mater. Chem. 2009, 19(42), 7796–7806.
  • Klibanov, A.M. “Permanently microbicidal materials coatings”, J. Mater. Chem. 2007, 17(24), 2479–2482.
  • Li, Z.; Lee, D.; Sheng, X.; Cohen, R.E.; Rubner, M.F. “Two-level antibacterial coating with both release-killing and contact-killing capabilities”, Langmuir 2006, 22(24), 9820–9823.
  • Sambhy, V.; MacBride, M.M.; Peterson, B.R.; Sen, A. “Silver bromide nanoparticle/polymer composites: dual action tunable antimicrobial materials”, J. Am. Chem. Soc. 2006, 128(30), 9798–9808.
  • Majumdar, P.; Lee, E.; Patel, N.; Ward, K.; Stafslien, S.J.; Daniels, J.; Chisholm, B.J.; Boudjouk, P.; Callow, M.E.; Callow, J.A. “Combinatorial materials research applied to the development of new surface coatings IX: An investigation of novel antifouling/fouling-release coatings containing quaternary ammonium salt groups”, Biofouling 2008, 24(3), 185–200.
  • Zhao, Q.; Liu, Y.; Wang, C. “Development and evaluation of electroless Ag-PTFE composite coatings with anti-microbial and anti-corrosion properties”, Appl. Surf. Sci. 2005, 252(5), 1620–1627.
  • Stobie, N.; Duffy, B.; Colreavy, J.; McHale, P.; Hinder, S.J.; McCormack, D.E. “Dual-action hygienic coatings: Benefits of hydrophobicity and silver ion release for protection of environmental and clinical surfaces”, J. Colloid Interface Sci. 2010, 345(2), 286–292.
  • Ho, C.H.; Tobis, J.; Sprich, C.; Thomann, R.; Tiller, J.C. “Nanoseparated polymeric networks with multiple antimicrobial properties”, Adv. Mater. 2004, 16(12), 957–961.
  • Ding, X.; Yang, C.; Lim, T.P.; Hsu, L.Y.; Engler, A.C.; Hedrick, J.L.; Yang, Y.-Y. “Antibacterial and antifouling catheter coatings using surface grafted PEG-b-cationic polycarbonate diblock copolymers”, Biomaterials 2012, 33(28), 6593–6603.
  • Green, J.-B. D.; Fulghum, T.; Nordhaus, M.A. “Immobilized antimicrobial agents: A critical perspective”, Chem. Rev. 2009, 109(11), 5437–5527.
  • Yang, W.J.; Neoh, K.-G.; Kang, E.-T.; Lee, S.S. C.; Teo, S.L.-M.; Rittschof, D. “Functional polymer brushes via surface-initiated atom transfer radical graft polymerization for combating marine biofouling”, Biofouling 2012, 28(9), 895–912.
  • Fan, X.; Lin, L.; Dalsin, J.L.; Messersmith, P.B. “Biomimetic anchor for surface-initiated polymerization from metal substrates”, J. Am. Chem. Soc. 2005, 127(45), 15843–15847.
  • Huang, J.; Murata, H.; Koepsel, R.R.; Russell, A.J.; Matyjaszewski, K. “Antibacterial polypropylene via surface-initiated atom transfer radical polymerization”, Biomacromolecules 2007, 8(5), 1396–1399.
  • Lee, S.B.; Koepsel, R.R.; Morley, S.W.; Matyjaszewski, K.; Sun, Y.; Russell, A.J. “Permanent, nonleaching antibacterial surfaces. 1. Synthesis by atom transfer radical polymerization”, Biomacromolecules 2004, 5(3), 877–882.
  • Murata, H.; Koepsel, R.R.; Matyjaszewski, K.; Russell, A.J. “Permanent, non-leaching antibacterial surfaces—2: How high density cationic surfaces kill bacterial cells”, Biomaterials 2007, 28(32), 4870–4879.
  • Neoh, K.; Kang, E. “Combating bacterial colonization on metals via polymer coatings: relevance to marine and medical applications”, ACS Applied Materials & Interfaces 2011, 3(8), 2808–2819.
  • Akid, R.; Wang, H.; Smith, T.J.; Greenfield, D.; Earthman, J.C. “Biological functionalization of a sol–gel coating for the mitigation of microbial-induced corrosion”, Adv. Funct. Mater. 2008, 18(2), 203–211.
  • Gittens, J.E.; Smith, T.J.; Suleiman, R.; Akid, R. “Current and emerging environmentally-friendly systems for fouling control in the marine environment”, Biotechnol. Adv. 2013, 31(8), 1738–1753.
  • Wan, D.; Yuan, S.; Neoh, K.; Kang, E. “Poly (glycidyl methacrylate)–polyaniline bilayer-modified mild steel for combating biocorrosion in seawater”, J. Electrochem. Soc. 2009, 156(8), C266–C274.
  • Wan, D.; Yuan, S.; Neoh, K.; Kang, E. “Surface functionalization of copper via oxidative graft polymerization of 2, 2′-bithiophene and immobilization of silver nanoparticles for combating biocorrosion”, ACS Applied Materials & Interfaces 2010, 2(6), 1653–1662.
  • Xu, F.; Yuan, S.; Pehkonen, S.; Kang, E.; Neoh, K. “Antimicrobial surfaces of viologen-quaternized poly ((2-dimethyl amino) ethyl methacrylate)-Si (100) hybrids from surface-initiated atom transfer radical polymerization”, NanoBiotechnology 2006, 2(3-4), 123–134.
  • Yuan, S.; Liu, C.; Pehkonen, S.; Bai, R.; Neoh, K.; Ting, Y.; Kang, E. “Surface functionalization of Cu–Ni alloys via grafting of a bactericidal polymer for inhibiting biocorrosion by Desulfovibrio desulfuricans in anaerobic seawater”, Biofouling 2009, 25(2), 109–125.
  • Yuan, S.; Xu, F.; Pehkonen, S.; Ting, Y.; Neoh, K.; Kang, E. “Grafting of antibacterial polymers on stainless steel via surface-initiated atom transfer radical polymerization for inhibiting biocorrosion by Desulfovibrio desulfuricans”, Biotechnol. Bioeng. 2009, 103(2), 268–281.
  • Yuan, S.; Xu, F.; Kang, E.; Pehkonen, S. “Modification of surface-oxidized copper alloy by coupling of viologens for inhibiting microbiologically influenced corrosion”, J. Electrochem. Soc. 2007, 154(11), C645–C657.
  • Yuan, S.; Pehkonen, S.; Ting, Y.; Neoh, K.; Kang, E. “Inorganic-organic hybrid coatings on stainless steel by layer-by-layer deposition and surface-initiated atom-transfer-radical polymerization for combating biocorrosion”, ACS Applied Materials & Interfaces 2009, 1(3), 640–652.
  • Yuan, S.; Pehkonen, S.; Ting, Y.; Neoh, K.; Kang, E. “Antibacterial inorganic- organic hybrid coatings on stainless steel via consecutive surface-initiated atom transfer radical polymerization for biocorrosion prevention”, Langmuir 2009, 26(9), 6728–6736.
  • Patil, A.; Heeger, A.; Wudl, F. “Optical properties of conducting polymers”, Chem. Rev. 1988, 88(1), 183–200.
  • Kaneto, K.; Yoshino, K.; Inuishi, Y. “Electrical properties of conducting polymer, poly-thiophene, prepared by electrochemical polymerization”, Japanese Journal of Applied Physics 1982, 21, L567–L568.
  • Armelin, E.; Martí, M.; Liesa, F.; Iribarren, J.I.; Alemán, C. “Partial replacement of metallic zinc dust in heavy duty protective coatings by conducting polymer”, Prog. Org. Coat. 2010, 69(1), 26–30.
  • Laco, J.I. I.; Villota, F.C.; Mestres, F.L. “Corrosion protection of carbon steel with thermoplastic coatings and alkyd resins containing polyaniline as conductive polymer”, Prog. Org. Coat. 2005, 52(2), 151–160.
  • Saravanan, K.; Sathiyanarayanan, S.; Muralidharan, S.; Azim, S.S.; Venkatachari, G. “Performance evaluation of polyaniline pigmented epoxy coating for corrosion protection of steel in concrete environment”, Prog. Org. Coat. 2007, 59(2), 160–167.
  • Armelin, E.; Pla, R.; Liesa, F.; Ramis, X.; Iribarren, J.I.; Alemán, C. “Corrosion protection with polyaniline and polypyrrole as anticorrosive additives for epoxy paint”, Corros. Sci. 2008, 50(3), 721–728.
  • Hosseini, M.; Sabouri, M.; Shahrabi, T. “Corrosion protection of mild steel by polypyrrole phosphate composite coating”, Prog. Org. Coat. 2007, 60(3), 178–185.
  • Mirmohseni, A.; Oladegaragoze, A. “Anti-corrosive properties of polyaniline coating on iron”, Synth. Met. 2000, 114(2), 105–108.
  • Seshadri, D.T.; Bhat, N.V. “Use of polyaniline as an antimicrobial agent in textiles”, Indian Journal of Fibre and Textile Research 2005, 30(2), 204–206.
  • Seshadri, D.T.; Bhat, N.V. “Synthesis and properties of cotton fabrics modified with polypyrrole”, Sen’i Gakkaishi 2005, 61(4), 103–108.
  • Varesano, A.; Aluigi, A.; Florio, L.; Fabris, R. “Multifunctional cotton fabrics”, Synth. Met. 2009, 159(11), 1082–1089.
  • Shi, N.; Guo, X.; Jing, H.; Gong, J.; Sun, C.; Yang, K. “Antibacterial effect of the conducting polyaniline”, J. Mater. Sci. Technol. 2006, 22(3), 289–290.
  • Wang, X.-H.; Li, J.; Zhang, J.-Y.; Sun, Z.-C.; Yu, L.; Jing, X.-B.; Wang, F.-S.; Sun, Z.-X.; Ye, Z.-J. “Polyaniline as marine antifouling and corrosion-prevention agent”, Synth. Met. 1999, 102(1), 1377–1380.
  • Mostafaei, A.; Nasirpouri, F. “Preparation and characterization of a novel conducting nanocomposite blended with epoxy coating for antifouling and antibacterial applications”, Journal of Coatings Technology and Research 2013, 10(5), 679–694.
  • Huang, L.; Huang, Z.; Qi, G.; Kei, S.; Yutaka, H. “Preparation of conducting poly N-methylaniline microsphere and its antibacterial performance to sulfate reducing bacteria”, Journal of Wuhan University of Technology-Mater. Sci. Ed. 2008, 23(4), 536–540.
  • Yuan, S.; Tang, S.; Lv, L.; Liang, B.; Choong, C.; Pehkonen, S.O. “Poly(4-vinylaniline)-polyaniline bilayer-modified stainless steels for the mitigation of biocorrosion by sulfate-reducing bacteria(SRB) in seawater”, Industrial & Engineering Chemistry Research 2012, 51(45), 14738–14751.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.