796
Views
17
CrossRef citations to date
0
Altmetric
Reviews

Recent Trends of Polymer-Protein Conjugate Application in Biocatalysis: A Review

, , , , &
Pages 163-198 | Received 12 Jan 2014, Accepted 25 Sep 2014, Published online: 28 Jan 2015

References

  • Johannes, T.; Simurdiak, M.R.; Zhao, H. “Biocatalysis”, Encyclopedia of Chemical Processing 2006, 101–110.
  • Faber, K. Biotransformations; Springer-Verlag: Berlin, 1997. 3rd edition, pp. 3–7.
  • Davis, B.G.; Boyer, V. “Biocatalysis and enzymes in organic synthesis”, Nat. Prod. Rep. 2001, 18, 618–640.
  • Leóna, R.; Fernandesa, P.; Pinheiroa, H.M.; Cabral, J.M. S. “Whole-cell biocatalysis in organic media”, Enz. Microb. Technol. 1998, 23, 483–500.
  • Nikolova, P.; Ward, O.P. “Whole cell biocatalysis in nonconventional media”, J. Ind. Microbiol. 1993, 12, 76–86.
  • Iyer, P.; Ananthanarayan, L. “Enzyme stability and stabilization-aqueous and nonaqueous environment”, Process Biochem. 2008, 43, 1019–1032.
  • Mateo, C.; Palomo, J.M.; Fernández-Lorente, G.; Guisán, J.M.; Fernández-Lafuente, R. “Improvement of enzyme activity, stability and selectivity via immobilization techniques”, Enz. Microb. Technol. 2007, 40, 1451–1463.
  • Polizzi, K.M.; Bommarius, A.S.; Broering, J.M.; Chaparro-Riggers, J.F. “Stability of biocatalysts”, Curr. Opin. Chem. Biol. 2007, 11, 220–225.
  • Bornscheuer, U.T. “Immobilizing enzymes: How to create more suitable biocatalysts”, Angewandte Chemie International Edition 2003, 43, 3336–3337.
  • Cao, L. Carrier-Bound Immobilized Enzymes: Principles, Applications and Design; Wiley-VCH: Weinheim, 2005.
  • Liu, W.; Wang, P. “Co-factor regeneration for sustainable enzymatic biosynthesis”, Biotechnol. Adv. 2007, 25, 369–384.
  • Sheldon, R.A. “Enzyme immobilization: The quest for optimum performance”, Adv. Synth. Catal. 2007, 349, 1289–1307.
  • Klibanov, A.M. “Immobilized enzymes and cells as practical catalysts”, Science 1983, 219, 722–727.
  • Bickerstaff, G.F. Enzymes in Industry and Medicine; Cambridge University Press: UK, 1991.
  • Tischer, W.; Wedekind, F. Immobilized Enzymes: Methods and Applications. In Biocatalysis: From Discovery to Application; Springer: Berlin, 1999, pp. 95–126.
  • Sheldon, R.A.; van Pelt, S. “Enzyme immobilisation in biocatalysis: Why, what, and how”, Chem. Soc. Rev. 2013, 42(15):62236235.
  • Kennedy, J.F. Handbook of Enzyme Technology; Prentice Hall: NY, 1995.
  • Costa, S.A.; Azevedo, H.S.; Reis, R.L. Enzyme Immobilization in Biodegradable Polymers for Biomedical Applications; CRC Press: Boca Raton, FL, 2004, pp. 301–324.
  • Yan, M.; Ge, J.; Liu, Z.; Ouyang, P. “Encapsulation of single enzyme in nanogel with enhanced biocatalytic activity and stability”, J. Am. Chem. Soc. 2006, 128, 11008–11009.
  • Wang, P.; Sergeeva, M.V.; Lim, L.; Dordick, J.S. “Biocatalytic plastics as active and stable materials for biotransformations”, Nature Biotechnology 1997, 15, 789–793.
  • Caruso, F.; Trau, D.; Mohwald, H.; Renneberg, R. “Enzyme encapsulation in layer by layer engineered polymer multilayer capsules”, Langmuir 2000, 16, 1484–1488.
  • Wang, Y.; Caruso, F. “Enzyme encapsulation in nanoporous silica spheres”, Chem. Commun. 2004, 13, 1528–1529.
  • Jin, W.; Shi, X.; Caruso, F. “High activity enzyme microcrystal multilayer films”, J. Am. Chem. Soc. 2001, 123, 8121–8122.
  • Trau, D.; Yang, W.; Seydack, M.; Caruso, F.; Yu, N.T.; Renneberg, R. “Nanoencapsulated microcrystalline particles for superamplified biochemical assays”, Anal. Chem. 2002, 74, 5480–5486.
  • Mureseanu, M.; Galarneau, A.; Renard, G.; Fajula, F. “A new mesoporous micelle-templated silica route for enzyme encapsulation”, Langmuir 2005, 21, 4648–4655.
  • Adlercreutz, P. Immobilisation of enzymes for use in organic media. In: Immobilization of Enzymes and Cells, Vol. 55, J.M. Guisan, ed.; 2nd Ed.; Humana Press: NJ, 1996.
  • Brady, D.; Jordaan, J. “Advances in enzyme immobilisation”, Biotechnol. Lett. 2009, 31, 1639–1650.
  • Illanes, A. Enzyme Biocatalysis: Principles and Applications; Springer: UK, 2008, p. 36.
  • Vilenchik, L.Z.; Griffith, J.P.; St Clair, N.; Navia, M.N.; Margolin, A.L. “Protein crystals as novel microporous materials”, J. Am. Chem. Soc. 1998, 120, 4290–4294.
  • Matthews, B.W. “Solvent content of protein crystals”, J. Mol. Biol. 1968, 33, 491–497.
  • Govardhan, C.P. “Crosslinking of enzymes for improved stability and performance”, Curr. Opin. Biotechnol. 1999, 10, 331–335.
  • Kirk, O.; Christensen, M.W. “Lipases from Candida antarctica: Unique biocatalysts from a unique origin”, Org. Process Res. Dev. 2002, 6, 446451.
  • Katchalski–Katzir, E.; Kraemer, D.M. “Eupergit C, a carrier for immobilization of enzymes of industrial potential”, J. Mol. Catal. B: Enzymatic 2000, 10, 157–176.
  • Kallenberg, A.I.; van Rantwijk, F.; Sheldon, R.A. “Immobilization of penicillin G acylase: The key to optimum performance”, Adv. Synth. Catal. 2005, 347, 905–926.
  • Petkar, M.; Lali, A.; Caimi, P.; Daminati, M. “Immobilization of lipase for non-aqueous synthesis”, J. Mol. Catal. B: Enzym. 2006, 39, 83–90.
  • Tosa, T.; Mori, T.; Fuse, N.; Chibata, I. “Studies on continuous enzyme reactions. I. Screening of carriers for preparation of water-insoluble aminoacylase”, Enzymologia 1966, 31, 214–224.
  • Datta, S.; Christena, L.R.; Sriramulu Rajaram, Y.R. “Enzyme immobilization: an overview on techniques and support materials”, Biotech 2013, 3, 1–9.
  • Al-Adhami, A.J. H.; Bryjak, J.; Greb-Markiewicz, B.; Peczynska-Czoch, W. “Immobilization of wood-rotting fungi laccases on modified cellulose and acrylic carriers”, Process Biochem. 2002, 37, 1387–1394.
  • Bryjak, J.; Aniulyte, J.; Liesiene, J. “Evaluation of man–tailored cellulose-based carriers in glucoamylase immobilization”, Carbohyd Res. 2007, 342, 1105–1109.
  • Huang, X.J.; Chen, P.C.; Huang, F.; Ou, Y.; Chen, M.R.; Xu, Z.K. “Immobilization of Candida rugosa lipase on electrospun cellulose nanofiber membrane”, J. Mol. Catal. B.: Enzym. 2011, 70, 95–100.
  • Klein, M.P.; Scheeren, C.W.; Lorenzoni, A.S. G.; Dupont, J.; Frazzon.; Hertz, P.F. “Ionic liquid-cellulose film for enzyme immobilization”, Process Biochem. 2011, 46, 1375–1379.
  • Labus, K.; Turek, A.; Liesiene, J.; Bryjak, J. “Efficient Agaricus bisporus tyrosinase immobilization on cellulose-based carriers”, Biochem. Eng. J. 2011, 56, 232–240.
  • Mislovicová, D.; Masarova, J.; Vikartovska, A.; Germeiner, P.; Michalkova, E. “Biospecific immobilization of mannan–penicillin G acylase neoglycoenzyme on Concanavalin A-bead cellulose”, J. Biotechnol. 2004, 110, 11–19.
  • Namdeo, M.; Bajpai, S.K. “Immobilization of a-amylase onto cellulose-coated magnetite (CCM) nanoparticles and preliminary starch degradation study”, J. Mol. Catal. B.: Enzym. 2009, 59, 134–139.
  • Petri, A.; Marconcini, P.; Salvadori, P. “Efficient immobilization of epoxide hydrolase onto silica gel and use in the enantioselective hydrolysis of racemic para-nitrostyrene oxide”, J. Mol. Catal. B: Enzym. 2005, 32, 219–224.
  • Diaz, J.; Balkus, K.J. “Enzyme immobilization in MCM-41 molecular sieve “, J. Mol. Catal. B: Enzym. 1996, 2, 115–126.
  • Zhou, Z.; Hartmann, M. “Recent progress in biocatalysis with enzymes immobilized on mesoporous hosts”, Top. Catal. 2012, 55, 1081–1100.
  • Xing, G.W.; Li, X.W.; Tian, G.L.; Ye, Y.H. “Enzymatic peptide synthesis in organic solvent with different zeolites as immobilization matrices”, Tetrahedron 2000, 56, 3517–3522.
  • Serralha, F.N.; Lopes, J.M.; Lemos, F.; Prazeres, D.M. F.; Aires-Barros, M.R.; Cabral, J.M. S.; Ribeiro, F.R. “Zeolites as supports for an enzymatic alcoholysis reaction”, J. Mol. Catal. B.: Enzym. 1998, 4, 303–311.
  • Magnan, E.; Catarino, I.; Paolucci-Jeanjean, D.; Preziozi-Belloy, L.; Belleville, M.P. “Immobilization of lipase on a ceramic membrane: Activity and stability”, J Membr Sci 2004, 241, 161–166.
  • Huang, L.; Cheng, Z.M. “Immobilization of lipase on chemically modified bimodal ceramic foams for olive oil hydrolysis”, Chem. Eng. J. 2008, 144, 103–109.
  • Khan, A.A.; Akhtar, S.; Husain, Q. “Direct immobilization of polyphenol oxidases on celite 545 from ammonium sulphate fractionated proteins of potato (Solanum tuberosum)”, J. Mol. Catal. B.: Enzym. 2006, 40, 58–63.
  • Liu, C.H.; Lin, Y.H.; Chen, C.Y.; Chang, J.S. “Characterization of Burkholderia lipase immobilized on celite carriers”, J. Taiwan. Inst. Chem. E. 2009, 40, 359–363.
  • Dezott, M.; Innocentini-Mei, L.H.; Durán, N. “Silica immobilized enzyme catalyzed removal of chlorolignins from eucalyptus kraft effluent”, J. Biotechnol. 1995, 43, 161–167.
  • Soleimani, M.; Khani, A.; Najafzadeh, K. “α-Amylase immobilization on the silica nanoparticles for cleaning performance towards starch soils in laundry detergents”, J. Mol. Catal. B.: Enzym. 2011, 74, 1–5.
  • Rao, M.N.; Kembhavi, A.A.; Pant, A. “Immobilization of endopolygalacturonase from Aspergillus ustus on silica gel”, Biotechnol. Lett. 2000, 22, 1557–1559.
  • Wang, P.; Dai, S.; Waezsada, S.D.; Tsao, A.Y.; Davison, B.H. “Enzyme stabilization by covalent binding in nanoporous sol-gel glass for nonaqueous biocatalysis”, Biotechnol. Bioeng. 2001, 74, 249–255.
  • Kim, M.I.; Ham, H.O.; Ho, S.D.; Park, H.G.; Chang, H.N.; Choi, S.H. “Immobilization of Mucor javanicus lipase on effectively functionalized silica nanoparticles “, J. Mol. Catal. B: Enzym. 2006, 39, 62–68.
  • Kahraman, M.V.; Bayramoglu, G.; Kayaman-Apohan, N.; Güngör, A. “UV-curable methacrylated/fumaric acid modified epoxy as a potential support for enzyme immobilization”, React. Funct. Polym. 2007, 67, 97–103.
  • Sahney, R.; Puri, B.K.; Anand, S. “Enzyme coated glass pHelectrode: its fabrication and applications in the determination of urea in blood samples.” Anal. Chim. Acta. 2005, 542, 157–161.
  • Alkan, S.; Gür, A.; Ertan, M.; Savran, A.; Gür, T.; Genel, Y. “Immobilization of catalase via adsorption into natural and modified active carbon obtained from walnut in various methods”, Afr. J. Biotechnol. 2009, 8, 2631–2635.
  • Kumar, A.G.; Perinbam, K.; Kamatchi, P.; Nagesh, N.; Sekaran, G. “In situ immobilization of acid protease on mesoporous activated carbon packed column for the production of protein hydrolysates.” Bioresour. Technol. 2010, 101, 1377–1379.
  • Dutta, S.; Bhattacharyya, A.; De, P.; Ray, P.; Basu, S. “Removal of mercury from its aqueous solution using charcoal-immobilized papain (CIP)”, J. Hazard. Mater. 2009, 172, 888–896.
  • Rani, A.S.; Das, M.L. M.; Satyanarayana, S. “Preparation and characterization of amyloglucosidase adsorbed on activated charcoal.” J. Mol. Catal. B.: Enzym. 2000, 10, 471–476.
  • Aguilar, M.R.; Elvira, C.; Gallardo, A.; Vázquez, B.; Román, J.S. “Smart Polymers and Their Applications as Biomaterials”. In: Topics in Tissue Engineering; N. Ashammakhi, R.L. Reis, E. Chiellini, eds. Elsevier: Cambridge, UK, 2007.
  • Ding, Z.; Chen, G.; Hoffman, A.S. “Properties of polyNIPAAm-trypsin conjugates”, J Biomed Mater Res 1998, 39, 498–505.
  • Pojman, J.A.; Tran-Cong-Miyata, Q. Nonlinear Dynamics with Polymers: Fundamentals, Methods and Applications; Wiley: NJ, 2010.
  • Farooqib, Z.H.; Khana, H.U.; Shaha, S.M.; Siddiq, M. “Stability of poly(N-isopropylacrylamide-co-acrylic acid) polymer microgels under various conditions of temperature, pH and salt concentration”, Arabian J. Chem. 2014, (Article in press).
  • Kawasaki, H.; Sasaki, S.; Maeda, H. “Effect of pH on the volume phase transition of copolymer gels of N-isopropylacrylamide and sodium acrylate”, J. Phys. Chem. B 1997, 101, 5089–5093.
  • Galaev, I.Y.; Mattiasson, B. “‘Smart’ polymers and what they could do in biotechnology and medicine”, Trends Biotechnol. 1999, 17, 335–340.
  • Qiu, Y.; Park, K. “Environment-sensitive hydrogels for drug delivery”, Adv. Drug. Deliver. Rev. 2001, 53, 321–339.
  • Gil, E.S.; Hudson, S.M. “Stimuli-reponsive polymers and their bioconjugates”, Prog. Polym. Sci. 2004, 29, 1173–1222.
  • Miyata, T.; Nakamae, K.; Hoffman, A.S.; Kanzaki, Y. “Stimuli-sensitivities of hydrogels containing phosphate groups”, Macromol. Chem. Phys. 2003, 195, 1110–1120.
  • Nakamae, K.; Miyata, T.; Hoffman, A.S. “Swelling behavior of hydrogels containing phosphate groups”, Macromol. Chem. 2003, 193, 983–990.
  • Park, S.Y.; Bae, Y.H. “Novel pH sensitive polymers containing sulfonamide groups”, Macromol. Rapid. Comm. 1999, 20, 269–273.
  • Sauer, M.; Streich, D.; Meier, W. “pH-sensitive nanocontainers”, Adv. Mater. 2001, 13, 1649–1651.
  • Aguilar, M.R.; Elvira, C.; Gallardo, A.; Vázquez, B.; Román, J.S. Smart polymers and their applications as biomaterials. In: Topics in Tissue Engineering, Vol. 55; N. Ashammakhi, R.L. Reis, E. Chiellini eds. Elsevier, Cambridge, UK, 2007.
  • Shchukin, D.G.; Sukhorukov, G.B.; Möhwald, H. “Smart inorganic/organic nanocomposite hollow microcapsules”, Angewandte Chemie - Int Ed 2003, 42, 4472–4475.
  • Podual, K.; Doyle, I.; Peppas, N.A. “Preparation and dynamic response of cationic copolymer hydrogels containing glucose oxidase”, Polymer 2000, 41, 3975–3983.
  • Chaterji, S.; Kwon, K.I.; Park, K. “Smart polymeric gels: Redefining the limits of biomedical devices”, Prog. Polym. Sci. 2007, 32, 1083–1122.
  • Ghanem, A.; Ghaly, A. “Immobilization of glucose oxidase in chitosan gel beads”, J. Appl. Polym. Sci. 2004, 91, 861–866.
  • Kang, S.I.; Bae, Y.H. “A sulfonamide based glucose-responsive hydrogel with covalently immobilized glucose oxidase and catalase”, J. Control Rel. 2003, 86, 115–121.
  • Bawa, P.; Pillay, V.; Choonara, Y.E.; du Toit, L.C. “Stimuli-responsive polymers and their applications in drug delivery”, Biomed. Mater. 2009, 4, 1–15.
  • Ghandehari, H.; Kopeckova, P.; Yeh, P.Y.; Kopecek, J. “Biodegradable and pH sensitive hydrogels: Synthesis by a polymer–polymer reaction”, Macromol. Chem. Phys. 1996, 197, 965–980.
  • Yeh, P.Y.; Kopeckova, P.; Kopecek, J. “Degradability of hydrogels containing azoaromatic crosslinks”, Macromol.Chem. Phys. 1995, 196, 2183–2202.
  • Zhang, X.; Zhuo, R.; Yang, Y. “Using mixed solvent to synthesize temperature sensitive poly(Nisopropylacrylamide) gel with rapid dynamic properties”, Biomaterials 2002, 26, 1313–1318.
  • Hoffman, A.S.; Stayton, P.S. “Conjugates of stimuli-responsive polymers and proteins”, Prog. Polym. Sci. 2007, 32, 922–932.
  • Shimoboji, T.; Larenas, E.; Fowler, T.; Hoffman, A.S.; Stayton, P.S. “Temperature-induced switching of enzyme activity with smart polymer-enzyme conjugates”, Bioconjug. Chem. 2003, 14, 517–525.
  • Ivanov, A.E.; Edink, E.; Kumar, A.; Galaev, I.; Arendsen, A.; Bruggink, A.; Mattiasson, B. “Conjugation of penicillin acylase with the reactive copolymer of N-isopropylacrylamide: A step toward a thermosensitive industrial biocatalyst”, Biotechnol. Prog. 2003, 19, 1167–1175.
  • Nath, N.; Chilkoti, A. “Creating “smart”surfaces using stimuli responsive polymers”, Adv. Mater. 2002, 14, 1243–1247.
  • Park, T.G.; Hoffman, A.S. “Effect of temperature cycling on the activity and productivity of immobilized-galactosidase in a thermally reversible hydrogel bead reactor”, Appl. Biochem. Biotechnol. 1988, 19, 1–9.
  • Murakata, T.; Liu, X.B.; Sato, S. “Esterification activity of immobilized lipase entrapped in thermal-phase transition gel”, J. Chem. Eng. Japan 1993, 26, 681–685.
  • Çiçek, H.; Tuncel, A. “Preparation and characterization of the thermoresponsive isopropylacrylamide-hydroxyethylmethacrylate copolymer gels”, J. Polym. Sci.; Part A: Polym. Chem. 1998, 36, 527–541.
  • Tuncel, A. “An engineering analysis for the continuous reactor behavior of α-chymotrypsin-immobilized thermosensitive gel cylinders”, J. Biotechnol. 1998, 63, 41–54.
  • Hoffman, A.S. ““Intelligent” polymers in medicine and biotechnology”, Artif. Organs 1995, 19, 458–467.
  • Takahashi, F.; Sakai, Y.; Mizutani, Y. “Immobilized enzyme reaction controlled bymagnetic heating: γ-Fe2O3 loaded thermosensitive polymer gels consisting of N-isopropylacrylamide and acrylamide”, J. Ferment. Bioeng. 1997, 83, 152–156.
  • Chen, J.-P. “Enzymes immobilized in smart hydrogels”, In: Smart Polymers for Bioseparation and Bioprocessing; I. Galaev, B. Mattiasson, eds.; Taylor & Francis: London, 2002.
  • Chen, J.P.; Chiu, S.H. “A poly(N-isopropylacrylamide-co-N-acryloxysuccinimide-co-2-hydroxyethylmethacrylate) composite hydrogel membrane for urease immobilization to enhance urea hydrolysis rate by temperature swing”, Enzyme Microb. Technol. 2000, 26, 359–367.
  • Zhu, J.; Zhang, Y.; Lu, D.; Zare, R.N.; Ge, J.; Liu, Z. “Temperature-responsive enzyme–polymer nanoconjugates with enhanced catalytic activities in organic media”, Chem. Commun. 2013, 49, 6090–6092.
  • Schmolka, I. “Artificial skin: Preparation and properties of Pluronic F-127 gels for treatment of burns”, J Biomed Mater Res 1972, 6, 571–582.
  • Jeong, B.; Kim, S.W.; Bae, Y.H. “Thermosensitive sol-gel reversible hydrogels”, Adv. Drug. Deliver. Rev. 2002, 54, 37–51.
  • Castillo, B.; Sola, R.; Ferrer, A.; Barletta, G.; Griebenow, K. “Effect of PEG modification on subtilisin Carlsberg activity, enantioselectivity, and structural dynamics in 1,4-dioxane”, Biotechnol. Bioeng. 2008, 99, 9–17.
  • Mine, Y.; Fukunaga, K.; Samejima, K.; Yoshimoto, M.; Nakao, K.; Sugimura, Y. “Structural effects of amphiphiles on Candida rugosa lipase activation by freeze-drying of aqueous solution of enzyme and amphiphile”, J. Biosci. Bioeng. 2003, 96, 525–528.
  • Shimoboji, T.; Larenas, E.; Fowler, T.; Kulkarni, S.; Hoffman, A.S.; Stayton, P.S. “Photoresponsive polymer–enzyme switches”, PNAS 2002, 99, 16592–16596.
  • Nicoletta, F.P.; Cupelli, D.; Formoso, P.; De Filpo, G.; Colella, V.; Gugliuzza, A. “Light responsive polymer membranes: A review”, Membranes 2012, 2, 134–197.
  • Liang, X.; Yue, X.; Dai, Z.; Kikuchi, J. “Photo-responsive liposomal nanohybrid cerasomes.” Chem. Commun. 2011, 47, 4751–4753.
  • Mukai, M.; Maruo, K.; Kikuchi, J.; Sasaki, Y.; Hiyama, S.; Moritani, Y.; Suda, T. “Propagation and amplification of molecular information using a photo-responsive molecular switch”, Supramol. Chem. 2009, 21, 284–291.
  • Sasaki, Y.; Iwamoto, S.; Mukai, M.; Kikuchi, J. “Photo- and thermo-responsive assembly of liposomal membranes triggered by a gemini peptide lipid as a molecular switch”, J. Photochem. Photobiol. A Chem. 2006, 183, 309–314.
  • Kikuchi, J.; Ariga, K.; Miyazaki, T.; Ikeda, K. “An artificial signal transduction system: Control of lactate dehydrogenase activity performed by an artificial cell-surface receptor”, Chem. Lett. 1999, 28, 253–254.
  • Kikuchi, J.; Kamijyo, Y.; Etoh, H.; Murakami, Y. “Catalytic performance of a supramolecular bienzyme complex formed with artificial aminotransferase and natural lactate dehydrogenase”, Chem. Lett. 1996, 25, 427–428.
  • Sheldon, R.A. “Characteristic features and biotechnological applications of cross-linked enzyme aggregates (CLEAs)”, Appl. Microbiol. Biotechnol. 2011, 92, 467–477.
  • Miyazaki, M.; Maeda, H. “Microchannel enzyme reactors and their applications for processing”, Trends Biotechnol. 2006, 24, 463–470.
  • Nardin, C.; Thoeni, S.; Widmer, J.; Winterhalter, M.; Meier, W. “Nanoreactors based on (polymerized) ABA-triblock copolymer vesicles.” Chem. Commun. (Cambridge, UK) 2000, 15, 1433–1434.
  • Vriezema, D.M.; Aragones, M.C.; Elemans, J.A. A. W.; Cornelissen, J.J. L. M.; Rowan, A.E.; Nolte, R.J. M. “Self-assembled nanoreactors”, Chem. Rev. (Washington, DC, US) 2005, 105, 1445–1489.
  • Vriezema, D.M.; Garcia, P.M. L.; Oltra, N.S.; Natzakis, N.S.; Kuiper, S.M.; Nolte, R.J. M.; Rowan, A.E.; van Hest, J.C. M. “Positional assembly of enzymes in polymersome nanoreactors for cascade reactions”, Angew. Chem. 2007, 46, 7378–7382.
  • Dimova, R.; Seifert, U.; Pouligny, B.; Forster, S.; Dobereiner, H.G. “Hyperviscous diblock copolymer vesicles”, Eur. Phys. J. 2002, E 7, 241–250.
  • Le Meins, J.F.; Sandre, O.; Lecommandoux, S. “Recent trends in the tuning of polymersomes’ membrane properties”, Eur. Phys. JE Soft Matter. 2011, 34(2), 1–17.
  • Antonietti, M.; Foerster, S. “Vesicles and liposomes: A self-assembly principle beyond lipids”, Adv. Mater. 2003, 15, 1323–1333.
  • Discher, D.E.; Eisenberg, A. “Polymer vesicles”, Science 2002, 297, 967–973.
  • Van Dongen, S.F. M.; Verdurmen, W.P. R.; Peters, R.J. R. W.; Nolte, R.J. M.; Brock, R.; Van Hest, J.C. M. “Cellular integration of an enzyme-loaded polymersome nanoreactor”, Angew. Chem. 2010, 49, 7213–7216.
  • Schlaad, H.; You, L.; Sigel, R.; Smarsly, B.; Heydenreich, M.; Mantion, A.; MaAiA, A. “Glycopolymer vesicles with an asymmetric membrane”, Chem. Commun. 2009, 12, 1478–1480.
  • Ho, D.; Chu, B.; Lee, H.; Montemagno, C.D. “Protein-driven energy transduction across polymeric biomembranes”, Nanotechnology 2004, 15, 1084–1094.
  • Ranquin, A.; Versees, W.; Meier, W.; Steyaert, J.; Van Gelder, P. “Therapeutic nanoreactors: combining chemistry and biology in a novel triblock copolymer drug delivery system”, Nano Lett. 2005, 5, 2220–2224.
  • Pata, V.; Dan, N. “The effect of chain length on protein solubilization in polymer-based vesicles (polymersomes)”, Biophys. J. 2003, 85, 2111–2118.
  • Graff, A.; Sauer, M.; Van Gelder, P.; Meier, W. “Virus-assisted loading of polymer nanocontainer”, Proc. Natl. Acad. Sci. USA 2002, 99, 5064–5068.
  • Tanner, P.; Egli, S.; Balasubramanian, V.; Onaca, O.; Palivan, C.G.; Meier, W. “Can polymeric vesicles that confine enzymatic reactions act as simplified organelles?” FEBS Lett. 2011, 585, 1699–1706.
  • Adams, D.J.; Kitchen, C.; Adams, S.; Furzeland, S.; Atkins, D.; Schuetz, P.; Fernyhough, C.M.; Tzokova, N.; Ryan, A.J.; Butler, M.F. “On the mechanism of formation of vesicles from poly(ethylene oxide)-blockpoly(caprolactone) copolymers.” Soft Matt. 2009, 5, 3086–3096.
  • Schatz, C.; Louguet, S.; Le Meins, J.-F.; Lecommandoux, S. “Polysaccharide-block-polypeptide copolymer vesicles: Towards synthetic viral capsids”, Angew. Chem. 2009, 48, 2572–2575.
  • Adams, D.J.; Atkins, D.; Cooper, A.I.; Furzeland, S.; Trewin, A.; Young, I. “Vesicles from peptidic side-chain polymers synthesized by atom transfer radical polymerization”, Biomacromolecules 2008, 9, 2997–3003.
  • Lin, L.; Yan, Z.; Gu, J.; Zhang, Y.; Feng, Z.; Yu, Y. “UV-responsive behavior of azopyridine-containing diblock copolymeric vesicles: Photoinduced fusion, disintegration and rearrangement”, Macromol. Rapid Commun. 2009, 30, 1089–1093.
  • Axthelm, F.; Casse, O.; Koppenol Willem, H.; Nauser, T.; Meier, W.; Palivan Cornelia, G. “Antioxidant nanoreactor based on superoxide dismutase encapsulated in superoxide-permeable vesicles”, J. Phys. Chem. B 2008, 112, 8211–8217.
  • Nardin, C.; Meier, W. “Hybrid materials from amphiphilic block copolymers and membrane proteins”, Rev. Mol. Biotechnol. 2002, 90, 17–26.
  • Broz, P.; Driamov, S.; Ziegler, J.; Ben-Haim, N.; Marsch, S.; Meier, W.; Hunziker, P. “Toward intelligent nanosize bioreactors: A pH-switchable, channel-equipped, functional polymer nanocontainer”, Nano Lett. 2006, 6, 2349–2353.
  • Grzelakowski, M.; Onaca, O.; Rigler, P.; Kumar, M.; Meier, W. “Immobilized protein-polymer nanoreactors”, Small 2009, 5, 2545–2548.
  • Nallani, M.; Benito, S.; Onaca, O.; Graff, A.; Lindemann, M.; Winterhalter, M.; Meier, W.; Schwaneberg, U. “A nanocompartment system (Synthosome) designed for biotechnological applications”, J. Biotechnol. 2006, 123, 50–59.
  • De Vocht, C.; Ranquin, A.; Willaert, R.; Van, G.J. A.; Vanhaecke, T.; Rogiers, V.; Versees, W.; Van, G.P.; Steyaert, J. “Assessment of stability, toxicity and immunogenicity of new polymeric nanoreactors for use in enzyme replacement therapy of mitochondrial neurogastrointestinal encephalomyopathy”, J. Contr. Rel. 2009, 137, 246–254.
  • Pallivan, C.G.; Fischer-Onaca, O.; Delcea, M.; Itel, F.; Meier, W. “Protein–polymer nanoreactors for medical applications”, Chem. Soc. Rev. 2012, 41, 2800–2823.
  • Bosman, A.W.; Janssen, H.M.; Meijer, E.W. “About dendrimers: Structure, physical properties, and applications”, Chem. Rev. 1999, 99, 1665–1688.
  • Klajnert, B.; Bryszewska, M. “Dendrimers: Properties and applications”, Acta Biochem. Pol. 2001, 48, 199–208.
  • Fréchet, J.M. “Functional polymers and dendrimers: Reactivity, molecular architecture, and interfacial energy”, Science 1994, 263, 1710–1715.
  • Yoon, H.C.; Lee, D.; Kim, H.–S. “Reversible affinity interactions of antibody molecules at functionalized dendrimer monolayer: affinity-sensing surface with reusability”, Anal. Chim. Acta. 2002, 456, 209–218.
  • Alonso, B.; Armada, P.G.; Losada, J.; Cuadrado, I.; González, B.; Casado, C.M. “Amperometric enzyme electrodes for aerobic and anaerobic glucose monitoring prepared by glucose oxidase immobilized in mixed ferrocene-cobaltocenium dendrimers”, Biosens. Bioelectron. 2004, 19, 1617–1625.
  • Armada, M.P. G.; Losada, J.; Zamora, M.; Alonso, B.; Cuadrado, I.; Casado, C.M. “Electrocatalytical properties of polymethylferrocenyl dendrimers and their applications in biosensing”, Bioelectrochemistry 2006, 69, 65–73.
  • Li, N.B.; Kwak, J. “A penicillamine biosensor based on tyrosinase immobilized on Nano-Au/ PAMAM dendrimer modified gold electrode”, Electroanalysis 2007, 19, 2428–2436.
  • Yao, K.; Zhu, Y.; Yang, X.; Li, C. “ENFET glucose biosensor produced with dendrimer encapsulated Pt nanoparticles”, Mater. Sci. Eng. C. 2008, 28, 1236–1241.
  • Klajnert, B.; Sadowska, M.; Bryszewska, M. “The effect of polyamidoamine dendrimers on human erythrocyte membrane acetylcholinesterase activity”, Bioelectrochemistry 2004, 65, 23–26.
  • Cheng, T.C.; DeFrank, J.J.; Rastogi, V.K. “Alteromonas prolidase for organophosphorus G-agent decontamination”, Chem. Biol. Interact. 1999, 119–120, 455–462.
  • Khew, S.T.; Yang, Q.J.; Tong, Y.W. “Enzymatically crosslinked collagenmimetic dendrimers that promote integrin–targeted cell adhesion.” Biomaterials 2008, 29, 3034–3045.
  • Geotti–Bianchini, P.; Darbre, T.; Reymond, J.L. “pH-tuned metal coordination and peroxidase activity of a peptide dendrimer enzyme model with a Fe(II)bipyridine at its core”, Org. Biomol. Chem. 2013, 11, 344–352.
  • Chandrawati, R.; Hosta-Rigau, L.; Vanderstraaten, D.; Lokuliyana, S.A.; Städler, B.; Albericio, F.; Caruso, F. “Engineering advanced capsosomes: Maximizing the number of subcompartments, cargo retention, and temperature-triggered reaction”, ACS Nano 2010, 4, 1351–1361.
  • Chandrawati, R.; Städler, B.; Postma, A.; Connal, L.A.; Chong, S.F.; Zelikin, A.N.; Caruso, F. “Cholesterol-mediated anchoring of enzyme-loaded liposomes within disulfide-stabilized polymer carrier capsules”, Biomaterials 2009, 30, 5988–5998.
  • Städler, B.; Chandrawati, R.; Price, A.D.; Chong, S.F.; Breheney, K.; Postma, A.; Connal, L.A.; Zelikin, A.N. F. C. “A microreactor with thousands of subcompartments: Enzyme-loaded liposomes within polymer capsules”, Angew. Chem. Int. Ed. Engl. 2009, 48, 4359–4362.
  • Massignani, M.; LoPresti, C.; Blanazs, A.; Madsen, J.; Armes, S.P.; Lewis, A.L.; Battaglia, G. “Controlling cellular uptake by surface chemistry, size, and surface topology at the nanoscale”, Small 2009, 5, 2424–2432.
  • Christian, N.A.; Milone, M.C.; Ranka, S.S.; Li, G.Z.; Frail, P.R.; Davis, K.P.; Bates, F.S.; Therien, M.J.; Ghoroghchian, P.P.; June, C.H.; Hammer, D.A. “Tatfunctionalized near-infrared emissive polymersomes for dendritic cell labeling”, Bioconjug. Chem. 2007, 18, 31–40.
  • Kis, K.; Bacher, A. “Substrate channeling in the lumazine synthase/riboflavin synthase complex of Bacillus subtilis”, J. Biol. Chem. 1995, 270, 16788–16795.
  • Wörsdörfer, B.; Woycechowsky, K.J.; Hilvert, D. “Directed evolution of a protein container”, Science 2011, 331, 589–592.
  • Patyar, S.; Joshi, R.; Prasad Byrav, D.S.; Prakash, A.; Medhi, B.; Das, B.K. “Bacteria in cancer therapy: a novel experimental strategy”, J. Biomed. Sci. 2010, 17, 1–9.
  • Dang, L.H.; Bettegowda, C.; Huso, D.L.; Kinzler, K.W.; Vogelstein, B. “Combination bacteriolytic therapy for the treatment of experimental tumors”, Proc Natl Acad Sci 2001, 98, 15155–15160.
  • Pastan, I. “Targeted therapy of cancer with recombinant immunotoxins”, Biochim Biophys Acta 1997, 1333, C1–C6.
  • Jia, H.; Zhu, G.; Vugrinovich, B.; Kataphinan, W.; Reneker, D.H.; Wang, P. “Enzyme-carrying polymeric nanofibers prepared via electrospinning for use as unique biocatalysts”, Biotechnol. Prog. 2002, 18, 1027–1032.
  • Romero, O.; Rivero, C.W.; Guisan, J.M.; Palomo, J.M. “Novel enzyme-polymer conjugates for biotechnological applications”, PeerJ. 2013, 1, e27 doi: 10.7717/peerj.27.
  • Chae, H.J.; Yoo, Y.J. “Mathematical analysis of an enzymatic reaction in an aqueous/organic two-phase system: Tyrosinase–catalysed hydroxylation of phenol.” J. Chem. Tech. Biotechnol. 1997, 70, 163–170.
  • Ross, A.C.; Bell, G.; Halling, P.J. “Organic solvent functional group effect on enzyme inactivation by the interfacial mechanism.” J. Mol. Catal. B: Enzym. 2000, 8, 183–192.
  • Zhu, G.; Wang, P. “Self-assemblies of polymer-enzyme conjugates at oil-water interfaces for interfacial biocatalysis”, Methods Mol. Biol. 2011, 743, 27–36.
  • Zhu, G.; Wang, P. “Novel interface-binding chloroperoxidase for interfacial epoxidation of styrene”, J. Biotechnol. 2005, 117, 195–202.
  • Roy, I.; Gupta, M.N. “Design of smart biocatalysts: Immobilization of enzymes on smart polymers”, In: Immobilization of Enzymes and Cells, Vol. 55; Humana Press: NJ, 2006, pp. 87–95.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.