1,612
Views
60
CrossRef citations to date
0
Altmetric
REVIEWS

Stimuli-Responsive Polymers and their Potential Applications in Oil-Gas Industry

, &
Pages 706-733 | Received 03 Oct 2014, Accepted 08 Apr 2015, Published online: 07 Aug 2015

References

  • Jochum, F. D.; Theato, P. “Temperature- and light-responsive smart polymer materials”, Chem. Soc. Rev. 2013, 42, 7468–7483.
  • Qiu, Y.; Park, K. “Environment-sensitive hydrogels for drug delivery”, Adv. Drug Delivery Rev. 2001, 53, 321–339.
  • Bajpai, A. K.; Shukla, S. K.; Bhanu, S.; Kankane, S. “Responsive polymers in controlled drug delivery”, Prog. Polym. Sci. 2008, 33, 1088–1118.
  • Zhao, Y. “Light-responsive block copolymer micelles”, Macromolecules 2012, 45, 3647–3657.
  • Kumar, A.; Galaev, I. Y.; Mattiasson, B. “Affinity precipitation of α-amylase inhibitor from wheat meal by metal chelate affinity binding using cu(II)-loaded copolymers of 1-vinylimidazole with N-isopropylacrylamide”, Biotechnol. Bioeng. 1998, 59, 695–704.
  • Sharma, S.; Kaur, P.; Jain, A.; Rajeswari, M. R.; Gupta, M. N. “A smart bioconjugate of chymotrypsin”, Biomacromolecules 2003, 4, 330–336.
  • Nath, N.; Chilkoti, A. “Creating “smart” surfaces using stimuli responsive polymers”, Adv. Mater. 2002, 14, 1243–1247.
  • Xin, B.; Hao, J. “Reversibly switchable wettability”, Chem. Soc. Rev. 2010, 39, 769–782.
  • Xia, F.; Zhu, Y.; Feng, L.; Jiang, L. “Smart responsive surfaces switching reversibly between super-hydrophobicity and super-hydrophilicity”, Soft Matter 2009, 5, 275–281.
  • Jiang, H. Y.; Kelch, S.; Lendlein, A. “Polymers move in response to light”, Adv. Mater. 2006, 18, 1471–1475.
  • Shiraishi, Y.; Miyamoto, R.; Hirai, T. “Spiropyran-conjugated thermoresponsive copolymer as a colorimetric thermometer with linear and reversible color change”, Org. Lett. 2009, 11, 1571–1574.
  • Zhang, J.; Zhang, M.; Tang, K.; Verpoort, F.; Sun, T. “Polymer-based stimuli-responsive recyclable catalytic systems for organic synthesis”, Small 2014, 10, 32–46.
  • Gil, E. S.; Hudson, S. M. “Stimuli-reponsive polymers and their bioconjugates”, Prog. Polym. Sci. 2004, 29, 1173–1222.
  • Stuart, M. A. C.; Huck, W. T. S.; Genzer, J.; Muller, M.; Ober, C.; Stamm, M.; Sukhorukov, G. B.; Szleifer, I.; Tsukruk, V. V.; Urban, M.; Winnik, F.; Zauscher, S.; Luzinov, I.; Minko, S. “Emerging applications of stimuli-responsive polymer materials”, Nat. Mater. 2010, 9, 101–103.
  • Schumers, J.-M.; Fustin, C.-A.; Gohy, J.-F. “Light-responsive block copolymers”, Macromol. Rapid Commun. 2010, 31, 1588–1607.
  • Wever, D. A. Z.; Picchioni, F.; Broekhuis, A. A. “Polymers for enhanced oil recovery: A paradigm for structure–property relationship in aqueous solution”, Prog. Polym. Sci. 2011, 36, 1558–1628.
  • Philippova, O. E.; Khokhlov, A. R. “Smart polymers for oil production”, Neftekhimiya 2010, 50, 279–283.
  • Morgan, S. E.; McCormick, C. L. “Water-soluble polymers in enhanced oil recovery”, Prog. Polym. Sci. 1990, 15, 103–145.
  • Standnes, D. C.; Skjevrak, I. “Literature review of implemented polymer field projects”, Journal of Petroleum Science and Engineering 2014, 122, 761–775.
  • ShamsiJazeyi, H.; Miller, C. A.; Wong, M. S.; Tour, J. M.; Verduzco, R. “Polymer-coated nanoparticles for enhanced oil recovery”, J. Appl. Polym. Sci. 2014, 40576, 1–13.
  • Dimitrov, I.; Trzebicka, B.; Müller, A. H. E.; Dworak, A.; Tsvetanov, C. B. “Thermosensitive water-soluble copolymers with doubly responsive reversibly interacting entities”, Prog. Polym. Sci. 2007, 32, 1275–1343.
  • Liu, X.-Y.; Cheng, F.; Liu, Y.; Liu, H.-J.; Chen, Y. “Preparation and characterization of novel thermoresponsive gold nanoparticles and their responsive catalysis properties”, J. Mater. Chem. 2010, 20, 360–368.
  • Meeussen, F.; Bauwens, Y.; Moerkerke, R.; Nies, E.; Berghmans, H. “Molecular complex formation in the system poly(vinyl methyl ether)/ωατϵρ”, Polymer 2000, 41, 3737–3743.
  • Diab, C.; Akiyama, Y.; Kataoka, K.; Winnik, F. M. “Microcalorimetric study of the temperature-induced phase separation in aqueous solutions of poly(2-isopropyl-2-oxazolines)”, Macromolecules 2004, 37, 2556–2562.
  • Van Durme, K.; Rahier, H.; Van Mele, B. “Influence of additives on the thermoresponsive behavior of polymers in aqueous solution”, Macromolecules 2005, 38, 10155–10163.
  • Chen, G.; Hoffman, A. S. “Graft copolymers that exhibit temperature-induced phase transitions over a wide range of pH”, Nature 1995, 373, 49–52.
  • Lowe, A. B.; McCormick, C. L. “Synthesis and solution properties of zwitterionic polymers”, Chem. Rev. 2002, 102, 4177–4190.
  • Lowe, A. B.; Billingham, N. C.; Armes, S. P. “Synthesis and properties of low-polydispersity poly(sulfopropylbetaine)s and their block copolymers”, Macromolecules 1999, 32, 2141–2148.
  • Huglin, M. B.; Radwan, M. A. “Unperturbed dimensions of a zwitterionic polymethacrylate”, Polym. Int. 1991, 26, 97–104.
  • Alexandridis, P.; Holzwarth, J. F.; Hatton, T. A. “Micellization of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymers in aqueous solutions: thermodynamics of copolymer association”, Macromolecules 1994, 27, 2414–2425.
  • Li, H.; Yu, G.-E.; Price, C.; Booth, C.; Hecht, E.; Hoffmann, H. “Concentrated aqueous micellar solutions of diblock copoly(oxyethylene/oxybutylene) E41B8: A study of phase behavior”, Macromolecules 1997, 30, 1347–1354.
  • Jeong, B.; Bae, Y. H.; Lee, D. S.; Kim, S. W. “Biodegradable block copolymers as injectable drug-delivery systems”, Nature 1997, 388, 860–862.
  • Jeong, B.; Bae, Y. H.; Kim, S. W. “Thermoreversible gelation of PEG–PLGA–PEG triblock copolymer aqueous solutions”, Macromolecules 1999, 32, 7064–7069.
  • Fu, Q.; Rama Rao, G. V.; Basame, S. B.; Keller, D. J.; Artyushkova, K.; Fulghum, J. E.; López, G. P. “Reversible control of free energy and topography of nanostructured surfaces”, J. Am. Chem. Soc. 2004, 126, 8904–8905.
  • Alvarez-Lorenzo, C.; Bromberg, L.; Concheiro, A. “Light-sensitive intelligent drug delivery systems”, Photochem. Photobiol. 2009, 85, 848–860.
  • Rapoport, N. “Physical stimuli-responsive polymeric micelles for anti-cancer drug delivery”, Prog. Polym. Sci. 2007, 32, 962–990.
  • Burnworth, M.; Tang, L.; Kumpfer, J. R.; Duncan, A. J.; Beyer, F. L.; Fiore, G. L.; Rowan, S. J.; Weder, C. “Optically healable supramolecular polymers”, Nature 2011, 472, 334–337.
  • Lim, H. S.; Han, J. T.; Kwak, D.; Jin, M.; Cho, K. “Photoreversibly switchable superhydrophobic surface with erasable and rewritable pattern”, J. Am. Chem. Soc. 2006, 128, 14458–14459.
  • Yang, Y.; Zhang, B.; Wang, Y.; Yue, L.; Li, W.; Wu, L. “A photo-driven polyoxometalate complex shuttle and its homogeneous catalysis and heterogeneous separation”, J. Am. Chem. Soc. 2013, 135, 14500–14503.
  • Liu, J.-H.; Chiu, Y.-H. “Behaviors of self-assembled diblock copolymer with pendant photosensitive azobenzene segments”, J. Polym. Sci., Part A: Polym. Chem. 2010, 48, 1142–1148.
  • Wang, G.; Tong, X.; Zhao, Y. “Preparation of azobenzene-containing amphiphilic diblock copolymers for light-responsive micellar aggregates”, Macromolecules 2004, 37, 8911–8917.
  • Zhu, M.-Q.; Zhu, L.; Han, J. J.; Wu, W.; Hurst, J. K.; Li, A. D. Q. “Spiropyran-based photochromic polymer nanoparticles with optically switchable luminescence”, J. Am. Chem. Soc. 2006, 128, 4303–4309.
  • Lee, H.-I.; Wu, W.; Oh, J. K.; Mueller, L.; Sherwood, G.; Peteanu, L.; Kowalewski, T.; Matyjaszewski, K. “Light-induced reversible formation of polymeric micelles”, Angew. Chem. Int. Ed. 2007, 46, 2453–2457.
  • Lim, S.-J.; Carling, C.-J.; Warford, C. C.; Hsiao, D.; Gates, B. D.; Branda, N. R. “Multifunctional photo- and thermo-responsive copolymer nanoparticles”, Dyes Pigm. 2011, 89, 230–235.
  • Yokoyama, Y.; Hasegawa, T.; Ubukata, T. “Highly diastereoselective photochromic ring closure of bisbenzothienylethenes possessing dual fluorinated stereocontrollers”, Dyes Pigm. 2011, 89, 223–229.
  • Chen, Z.; He, Y.; Wang, Y.; Wang, X. “Amphiphilic diblock copolymer with dithienylethene pendants: synthesis and photo-modulated self-assembly”, Macromol. Rapid Commun. 2011, 32, 977–982.
  • Jacquemin, P.-L.; Robeyns, K.; Devillers, M.; Garcia, Y. “Reversible photochromism of an N-salicylidene aniline anion”, Chem. Commun. 2014, 50, 649–651.
  • Robert, F.; Jacquemin, P.-L.; Tinant, B.; Garcia, Y. “Trans-keto* form detection in non photochromic N-salicylidene aminomethylpyridines”, CrystEngComm 2012, 14, 4396–4406.
  • Akiyama, H.; Kanazawa, S.; Okuyama, Y.; Yoshida, M.; Kihara, H.; Nagai, H.; Norikane, Y.; Azumi, R. “Photochemically reversible liquefaction and solidification of multiazobenzene sugar-alcohol derivatives and application to reworkable adhesives”, ACS Appl. Mater. Interfaces, 2014, 6, 7933–7941.
  • Kumar, G. S.; Neckers, D. C. “Photochemistry of azobenzene-containing polymers”, Chem. Rev. 1989, 89, 1915–1925.
  • Wang, S.; Wang, X.; Li, L.; Advincula, R. C. “Design, Synthesis, and photochemical behavior of poly(benzyl ester) dendrimers with azobenzene groups throughout their architecture”, J. Org. Chem. 2004, 69, 9073–9084.
  • Cao, P.-F.; Su, Z.; de Leon, A.; Advincula, R. C. “Photoswitchable nanocarrier with reversible encapsulation properties”, ACS Macro Lett. 2015, 4, 58–62.
  • Mitra, S.; Tamai, N. “Dynamics of photochromism in salicylideneaniline: A femtosecond spectroscopic study”, Phys. Chem. Chem. Phys. 2003, 5, 4647–4652.
  • Trenor, S. R.; Shultz, A. R.; Love, B. J.; Long, T. E. “Coumarins in polymers: From light harvesting to photo-cross-linkable tissue scaffolds”, Chem. Rev. 2004, 104, 3059–3078.
  • Jiang, J.; Qi, B.; Lepage, M.; Zhao, Y. “Polymer micelles stabilization on demand through reversible photo-cross-linking”, Macromolecules 2007, 40, 790–792.
  • Babin, J.; Lepage, M.; Zhao, Y. ““Decoration” of shell cross-linked reverse polymer micelles using atrp: a new route to stimuli-responsive nanoparticles”, Macromolecules 2008, 41, 1246–1253.
  • Theato, P. “One is enough: Influencing polymer properties with a single chromophoric unit”, Angew. Chem. Int. Ed. 2011, 50, 5804–5806.
  • Nojima, S.; Ohguma, Y.; Kadena, K.-I.; Ishizone, T.; Iwasaki, Y.; Yamaguchi, K. “Crystal orientation of poly(ϵ-caprolactone) homopolymers confined in cylindrical nanodomains”, Macromolecules 2010, 43, 3916–3923.
  • Kang, M.; Moon, B. “Synthesis of photocleavable poly(styrene-block-ethylene oxide) and its self-assembly into nanoporous thin films”, Macromolecules 2008, 42, 455–458.
  • Schumers, J.-M.; Bertrand, O.; Fustin, C.-A.; Gohy, J.-F. “Synthesis and self-assembly of diblock copolymers bearing 2-nitrobenzyl photocleavable side groups”, J. Polym. Sci., Part A: Polym. Chem. 2012, 50, 599–608.
  • Jiang, J.; Tong, X.; Morris, D.; Zhao, Y. “Toward photocontrolled release using light-dissociable block copolymer micelles”, Macromolecules 2006, 39, 4633–4640.
  • Bertrand, O.; Schumers, J.-M.; Kuppan, C.; Marchand-Brynaert, J.; Fustin, C.-A.; Gohy, J.-F. “Photo-induced micellization of block copolymers bearing 4,5-dimethoxy-2-nitrobenzyl side groups”, Soft Matter 2011, 7, 6891–6896.
  • Jiang, J.; Tong, X.; Zhao, Y. “A new design for light-breakable polymer micelles”, J. Am. Chem. Soc. 2005, 127, 8290–8291.
  • Savelyeva, X.; Marić, M. “Pyrrolidone-functional smart polymers via nitroxide-mediated polymerization”, J. Polym. Sci., Part A: Polym. Chem. 2014, 52, 2011–2024.
  • Babin, J.; Pelletier, M.; Lepage, M.; Allard, J.-F.; Morris, D.; Zhao, Y. “A new two-photon-sensitive block copolymer nanocarrier”, Angew. Chem. Int. Ed. 2009, 48, 3329–3332.
  • Dai, L. “Stimuli-responsive polymers”, In Intelligent Macromolecules for Smart Devices; Springer: London, 2004; pp 81–116.
  • Massari, A. M.; Stevenson, K. J.; Hupp, J. T. “Development and application of patterned conducting polymer thin films as chemoresponsive and electrochemically responsive optical diffraction gratings”, J. Electroanal. Chem. 2001, 500, 185–191.
  • Lahann, J.; Mitragotri, S.; Tran, T.-N.; Kaido, H.; Sundaram, J.; Choi, I. S.; Hoffer, S.; Somorjai, G. A.; Langer, R. “A reversibly switching surface”, Science 2003, 299, 371–374.
  • Xu, L.; Chen, W.; Mulchandani, A.; Yan, Y. “Reversible conversion of conducting polymer films from superhydrophobic to superhydrophilic”, Angew. Chem. Int. Ed. 2005, 44, 6009–6012.
  • Irvin, D. J.; Goods, S. H.; Whinnery, L. L. “Direct measurement of extension and force in conductive polymer gel actuators”, Chem. Mater. 2001, 13, 1143–1145.
  • Zrínyi, M. “Intelligent polymer gels controlled by magnetic fields”, Colloid. Polym. Sci. 2000, 278, 98–103.
  • Kimura, T.; Ago, H.; Tobita, M.; Ohshima, S.; Kyotani, M.; Yumura, M. “Polymer composites of carbon nanotubes aligned by a magnetic field”, Adv. Mater. 2002, 14, 1380–1383.
  • Filipcsei, G.; Csetneki, I.; Szilágyi, A.; Zrínyi, M., “Magnetic Field-Responsive Smart Polymer Composites”, In Oligomers - Polymer Composites - Molecular Imprinting; Springer: Berlin, 2007; Vol. 206, pp 137–189.
  • Genzer, J.; Efimenko, K. “Creating long-lived superhydrophobic polymer surfaces through mechanically assembled monolayers”, Science 2000, 290, 2130–2133.
  • Zhang, J.; Lu, X.; Huang, W.; Han, Y. “Reversible superhydrophobicity to superhydrophilicity transition by extending and unloading an elastic polyamide film”, Macromol. Rapid Commun. 2005, 26, 477–480.
  • Liu, F.; Urban, M. W. “Recent advances and challenges in designing stimuli-responsive polymers”, Prog. Polym. Sci. 2010, 35, 3–23.
  • Li, G.; Song, S.; Guo, L.; Ma, S. “Self-assembly of thermo- and pH-responsive poly(acrylic acid)-b-poly(N-isopropylacrylamide) micelles for drug delivery”, J. Polym. Sci., Part A: Polym. Chem. 2008, 46, 5028–5035.
  • Salgado-Rodríguez, R.; Licea-Claveríe, A.; Arndt, K. F. “Random copolymers of N-isopropylacrylamide and methacrylic acid monomers with hydrophobic spacers: pH-tunable temperature sensitive materials”, Eur. Polym. J. 2004, 40, 1931–1946.
  • Liu, F.; Urban, M. W. “Dual temperature and pH responsiveness of Poly(2-(N,N-dimethylamino)ethyl methacrylate-co-n-butyl acrylate) colloidal dispersions and their films”, Macromolecules 2008, 41, 6531–6539.
  • Ito, Y.; Ochiai, Y.; Park, Y. S.; Imanishi, Y. “pH-Sensitive gating by conformational change of a polypeptide brush grafted onto a porous polymer membrane”, J. Am. Chem. Soc. 1997, 119, 1619–1623.
  • Turner, S. R.; Lundberg, R. D.; Walker, T. O. Improved drilling fluids based on sulfonated elastomeric polymers. EP0106529 A1, 1984.
  • Gitsov, I.; Fréchet, J. M. J. “Stimuli-responsive hybrid macromolecules: Novel amphiphilic star copolymers with dendritic groups at the periphery”, J. Am. Chem. Soc. 1996, 118, 3785–3786.
  • Gras, S. L.; Mahmud, T.; Rosengarten, G.; Mitchell, A.; Kalantar-zadeh, K. “Intelligent control of surface hydrophobicity”, ChemPhysChem 2007, 8, 2036–2050.
  • Xu, C.; Wu, T.; Drain, C. M.; Batteas, J. D.; Fasolka, M. J.; Beers, K. L. “Effect of block length on solvent response of block copolymer brushes: Combinatorial study with block copolymer brush gradients”, Macromolecules 2006, 39, 3359–3364.
  • Motornov, M.; Sheparovych, R.; Lupitskyy, R.; MacWilliams, E.; Hoy, O.; Luzinov, I.; Minko, S. “Stimuli-responsive colloidal systems from mixed brush-coated nanoparticles”, Adv. Funct. Mater. 2007, 17, 2307–2314.
  • Draper, J.; Luzinov, I.; Minko, S.; Tokarev, I.; Stamm, M. “Mixed polymer brushes by sequential polymer addition: Anchoring layer effect”, Langmuir 2004, 20, 4064–4075.
  • Motornov, M.; Minko, S.; Eichhorn, K.-J.; Nitschke, M.; Simon, F.; Stamm, M. “Reversible tuning of wetting behavior of polymer surface with responsive polymer brushes”, Langmuir 2003, 19, 8077–8085.
  • Mori, H.; Hirao, A.; Nakahama, S.; Senshu, K. “Synthesis and surface characterization of hydrophilic-hydrophobic block copolymers containing poly(2,3-dihydroxypropyl methacrylate)”, Macromolecules 1994, 27, 4093–4100.
  • Senshu, K.; Kobayashi, M.; Ikawa, N.; Yamashita, S.; Hirao, A.; Nakahama, S. “Relationship between morphology of microphase-separated structure and phase restructuring at the surface of poly[2-hydroxyethyl methacrylate-block-4-(7‘-octenyl)styrene] diblock copolymers corresponding to environmental change”, Langmuir 1999, 15, 1763–1769.
  • Chen, Y.; Wulff, G. “Amphiphilic block copolymers with pendent sugar as hydrophilic segments and their surface properties”, Macromol. Chem. Phys. 2001, 202, 3273–3278.
  • Park, T. G.; Hoffman, A. S. “Sodium chloride-induced phase transition in nonionic poly(N-isopropylacrylamide) gel”, Macromolecules 1993, 26, 5045–5048.
  • Liu, X.-Y.; Mu, X.-R.; Liu, Y.; Liu, H.-J.; Chen, Y.; Cheng, F.; Jiang, S.-C. “Hyperbranched polymers with thermoresponsive property highly sensitive to ions”, Langmuir 2012, 28, 4867–4876.
  • Liu, X.; Cheng, F.; Liu, H.; Chen, Y. “Unusual salt effect on the lower critical solution temperature of hyperbranched thermoresponsive polymers”, Soft Matter 2008, 4, 1991–1994.
  • Wang, L.; Lin, Y.; Peng, B.; Su, Z. “Tunable wettability by counterion exchange at the surface of electrostatic self-assembled multilayers”, Chem. Commun. 2008, 45, 5972–5974.
  • Ganta, S.; Devalapally, H.; Shahiwala, A.; Amiji, M. “A review of stimuli-responsive nanocarriers for drug and gene delivery”, J. Controlled Release 2008, 126, 187–204.
  • Saito, G.; Swanson, J. A.; Lee, K.-D. “Drug delivery strategy utilizing conjugation via reversible disulfide linkages: role and site of cellular reducing activities”, Adv. Drug Delivery Rev. 2003, 55, 199–215.
  • Zhao, L.; Ding, J.; Xiao, C.; He, P.; Tang, Z.; Pang, X.; Zhuang, X.; Chen, X. “Glucose-sensitive polypeptide micelles for self-regulated insulin release at physiological pH”, J. Mater. Chem. 2012, 22, 12319–12328.
  • You, L.-C.; Lu, F.-Z.; Li, Z.-C.; Zhang, W.; Li, F.-M. “Glucose-sensitive aggregates formed by poly(ethylene oxide)-block-poly(2-glucosyl- oxyethyl acrylate) with concanavalin A in dilute aqueous medium”, Macromolecules 2002, 36, 1–4.
  • Salonen, A.; Langevin, D.; Perrin, P. “Light and temperature bi-responsive emulsion foams”, Soft Matter 2010, 6, 5308–5311.
  • Leung, M. F.; Zhu, J.; Harris, F. W.; Li, P. “New route to smart core-shell polymeric microgels: synthesis and properties”, Macromol. Rapid Commun. 2004, 25, 1819–1823.
  • Bokias, G.; Hourdet, D.; Iliopoulos, I. “Positively charged amphiphilic polymers based on poly(n-isopropylacrylamide):Phase behavior and shear-induced thickening in aqueous solution”, Macromolecules 2000, 33, 2929–2935.
  • Ding, X.-B.; Sun, Z.-H.; Zhang, W.-C.; Peng, Y.-X.; Wan, G.-X.; Jiang, Y.-Y. “Adsorption/desorption of protein on magnetic particles covered by thermosensitive polymers”, J. Appl. Polym. Sci. 2000, 77, 2915–2920.
  • Cheng, R.; Meng, F.; Deng, C.; Klok, H.-A.; Zhong, Z. “Dual and multi-stimuli responsive polymeric nanoparticles for programmed site-specific drug delivery”, Biomaterials 2013, 34, 3647–3657.
  • Zhuang, J.; Gordon, M. R.; Ventura, J.; Li, L.; Thayumanavan, S. “Multi-stimuli responsive Macromolecules and their assemblies”, Chem. Soc. Rev. 2013, 42, 7421–7435.
  • Zhang, J.; Liu, H.-J.; Yuan, Y.; Jiang, S.; Yao, Y.; Chen, Y. “Thermo-, pH-, and light-responsive supramolecular complexes based on a thermoresponsive hyperbranched polymer”, ACS Macro Lett. 2012, 2, 67–71.
  • Stegemeir, G. “Review of “Larry W. Lake, Enhanced Oil Recovery”, Prentice Hall: NJ 1989”, Energy Sources 1990, 12, 97–97.
  • Matteo, C.; Candido, P.; Vera, R. R.; Francesca, V. “Current and future nanotech applications in the oil industry”, Am. J. Applied Sci. 2012, 9, 784–793.
  • Finch, C. A. “Polymer-Improved Oil Recovery”, K. S. Sorbie Blackie & Son: Glasgow, 1991”, In Polym. Int. 1992, 28, 256–256.
  • García-Ochoa, F.; Santos, V. E.; Casas, J. A.; Gómez, E. “Xanthan gum: Production, recovery, and properties”, Biotechnol. Adv. 2000, 18, 549–579.
  • Kierulf, C.; Sutherland, I. W. “Thermal stability of xanthan preparations”, Carbohydr. Polym. 1988, 9, 185–194.
  • Lambert, F.; Rinaudo, M. “On the thermal stability of xanthan gum”, Polymer 1985, 26, 1549–1553.
  • Abu-Sharkh, B. F.; Yahaya, G. O.; Ali, S. A.; Kazi, I. W. “Solution and interfacial behavior of hydrophobically modified water-soluble block copolymers of acrylamide and N-phenethylacrylamide”, J. Appl. Polym. Sci. 2001, 82, 467–476.
  • Xie, X.; Hogen-Esch, T. E. “Copolymers of n,n-dimethylacrylamide and 2-(n-ethylperfluorooctanesulfonamido)ethyl acrylate in aqueous media and in bulk. Synthesis and properties”, Macromolecules 1996, 29, 1734–1745.
  • Bokias, G.; Hourdet, D.; Iliopoulos, I.; Staikos, G.; Audebert, R. “Hydrophobic interactions of poly(n-isopropylacrylamide) with hydrophobically modified poly(sodium acrylate) in aqueous solution”, Macromolecules 1997, 30, 8293–8297.
  • Hourdet, D.; Gadgil, J.; Podhajecka, K.; Badiger, M. V.; Brûlet, A.; Wadgaonkar, P. P. “Thermoreversible behavior of associating polymer solutions: Thermothinning versus thermothickening”, Macromolecules 2005, 38, 8512–8521.
  • Shaikh, S.; Ali, S. A.; Hamad, E. Z.; Abu-Sharkh, B. F. “Synthesis and solution properties of poly(acrylamide-styrene) block copolymers with high hydrophobic content”, Polymer Engineering & Science 1999, 39, 1962–1968.
  • Hourdet, D.; L'Alloret, F.; Audebert, R. “Synthesis of thermoassociative copolymers”, Polymer 1997, 38, 2535–2547.
  • Wang, G.; Lindell, K.; Olofsson, G. “On the thermal gelling of ethyl(hydroxyethyl)cellulose and sodium dodecyl sulfate. phase behavior and temperature scanning calorimetric response”, Macromolecules 1997, 30, 105–112.
  • McCormick, C. L.; Salazar, L. C. “Water soluble copolymers: 44. Ampholytic terpolymers of acrylamide with sodium 2-acrylamido-2-methylpropanesulphonate and 2-acrylamido-2-methylpropanetrimethyl-ammonium chloride”, Polymer 1992, 33, 4384–4387.
  • Ezell, R. G.; Gorman, I.; Lokitz, B.; Ayres, N.; McCormick, C. L. “Stimuli-responsive ampholytic terpolymers of N-acryloyl-valine, acrylamide, and (3-acrylamidopropyl)trimethylammonium chloride: Synthesis, characterization, and solution properties”, J. Polym. Sci., Part A: Polym. Chem. 2006, 44, 3125–3139.
  • Fevola, M. J.; Bridges, J. K.; Kellum, M. G.; Hester, R. D.; McCormick, C. L. “pH-Responsive ampholytic terpolymers of acrylamide, sodium 3-acrylamido-3-methylbutanoate, and (3-acrylamidopropyl)trimethylammonium chloride. I. Synthesis and characterization”, J. Polym. Sci., Part A: Polym. Chem. 2004, 42, 3236–3251.
  • McCormick, C. L.; Johnson, C. B. “Water-soluble copolymers. 29. Ampholytic copolymers of sodium 2-acrylamido-2-methylpropanesulfonate with (2-acrylamido-2-methylpropyl)dimethylammonium chloride: Solution properties”, Macromolecules 1988, 21, 694–699.
  • Fevola, M. J.; Kellum, M. G.; Hester, R. D.; McCormick, C. L. “pH-responsive ampholytic terpolymers of acrylamide, sodium 3-acrylamido-3-methylbutanoate, and (3-acrylamidopropyl)trimethylammonium chloride. II. Solution properties”, J. Polym. Sci., Part A: Polym. Chem. 2004, 42, 3252–3270.
  • McCormick, C. L.; Blackmon, K. P. Calcium-tolerant N-substituted acrylamides as thickeners for aqueous systems. US4649183 A, 1986.
  • Yan, B.; Boyer, J.-C.; Habault, D.; Branda, N. R.; Zhao, Y. “Near infrared light triggered release of biomacromolecules from hydrogels loaded with upconversion nanoparticles”, J. Am. Chem. Soc. 2012, 134, 16558–16561.
  • Lai, N.; Qin, X.; Ye, Z.; Peng, Q.; Zhang, Y.; Ming, Z. “Synthesis and evaluation of a water-soluble hyperbranched polymer as enhanced oil recovery chemical”, Journal of Chemistry 2013, 11. ID 824785.
  • Drake, E. N.; Morrison, M. E.; Dawson, C. R. Shear thickening fluid. WO1981000874 A1, 1985.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.