2,710
Views
129
CrossRef citations to date
0
Altmetric
Reviews

Toughening of Epoxy Nanocomposites: Nano and Hybrid Effects

, , &
Pages 70-112 | Received 30 Apr 2015, Accepted 17 Aug 2015, Published online: 07 Mar 2016

References

  • Chavarria, F.; Paul, D. R. “Comparison of nanocomposites based on nylon 6 and nylon 66”, Polymer 2004, 45, 8501–8515.
  • Liu, X.; Wu, Q. “PP/clay nanocomposites prepared by grafting-melt intercalation”, Polymer 2001, 42, 10013–10019.
  • Reichert, P.; Nitz, H.; Klinke, S.; Brandsch, R.; Thomann, R.; Mülhaupt, R. “Poly(propylene)/organoclay nanocomposite formation: Influence of compatibilizer functionality and organoclay modification”, Macromol. Mater. Eng. 2000, 275, 8–17.
  • Ma, C. G.; Mai, Y. L.; Rong, M. Z.; Ruan, W. H.; Zhang, M. Q. “Phase structure and mechanical properties of ternary polypropylene/elastomer/nano-CaCO3 composites”, Compos. Sci. Technol. 2007, 67, 2997–3005.
  • Chan, C.-M.; Wu, J.; Li, J.-X.; Cheung, Y.-K. “Polypropylene/calcium carbonate nanocomposites”, Polymer 2002, 43, 2981–2992.
  • Jiang, L.; Zhang, J.; Wolcott, M. P. “Comparison of polylactide/nano-sized calcium carbonate and polylactide/montmorillonite composites: Reinforcing effects and toughening mechanisms”, Polymer 2007, 48, 7632–7644.
  • Koval'chuk, A. A.; Shevchenko, V. G.; Shchegolikhin, A. N.; Nedorezova, P. M.; Klyamkina, A. N.; Aladyshev, A. M. “Effect of carbon nanotube functionalization on the structural and mechanical properties of polypropylene/MWCNT composites”, Macromolecules 2008, 41, 7536–7542.
  • Reynaud, E.; Jouen, T.; Gauthier, C.; Vigier, G.; Varlet, J. “Nanofillers in polymeric matrix: A study on silica reinforced PA6”, Polymer 2001, 42, 8759–8768.
  • Uddin, M. F.; Sun, C. T. “Improved dispersion and mechanical properties of hybrid nanocomposites”, Compos. Sci. Technol. 2010, 70, 223–230.
  • Chen, C.; Justice, R. S.; Schaefer, D. W.; Baur, J. W. “Highly dispersed nanosilica-epoxy resins with enhanced mechanical properties”, Polymer 2008, 49, 3805–3815.
  • Százdi, L.; Pozsgay, A.; Pukánszky, B. “Factors and processes influencing the reinforcing effect of layered silicates in polymer nanocomposites”, Eur. Polym. J. 2007, 43, 345–359.
  • He, C.; Liu, T.; Tjiu, W. C.; Sue, H.-J.; Yee, A. F. “Microdeformation and fracture mechanisms in polyamide-6/organoclay nanocomposites”, Macromolecules 2008, 41, 193–202.
  • Boo, W. J.; Sun, L. Y.; Liu, J.; Clearfield, A.; Sue, H. J.; Mullins, M. J.; Pham, H. “Morphology and mechanical behavior of exfoliated epoxy/α-zirconium phosphate nanocomposites”, Compos. Sci. Technol. 2007, 67, 262–269.
  • Choi, J.; Yee, A. F.; Laine, R. M. “Toughening of cubic silsesquioxane epoxy nanocomposites using core-shell rubber particles:  A three-component hybrid system”, Macromolecules 2004, 37, 3267–3276.
  • Khosh, R. L.; Bagheri, R.; Zokaei, S. “Sequences of fracture toughness micromechanisms in PP/CaCO3 nanocomposites”, J. Appl. Polym. Sci. 2008, 110, 4040–4048.
  • Pearson, R. A.; Dittanet, P.; Marouf, B. T.; Siotong, T. “On the use of different nanofillers to toughen epoxies”, Polymer Nanocomposites 2010: A New Decade of Opportunities; 2010, p. 1333.
  • Marouf, B. T. “Effect of microstructure factors on fracture behavior of clay-rubber-epoxy hybrid nanocomposites”, Ph.D. Dissertation, Sharif University of Technology: IR 2009.
  • Akbari, B.; Bagheri, R. “Deformation mechanism of epoxy/clay nanocomposite”, Eur. Polym. J. 2007, 43, 782–788.
  • Dasari, A.; Yu, Z.-Z.; Yang, M.; Zhang, Q.-X.; Xie, X.-L.; Mai, Y.-W. “Micro- and nano-scale deformation behavior of nylon 66-based binary and ternary nanocomposites”, Compos. Sci. Technol. 2006, 66, 3097–3114.
  • Gloaguen, J. M.; Lefebvre, J. M. “Plastic deformation behaviour of thermoplastic/clay nanocomposites”, Polymer 2001, 42, 5841–5847.
  • Kim, G. M.; Qin, H.; Fang, X.; Sun, F. C.; Mather, P. T. “Hybrid epoxy-based thermosets based on polyhedral oligosilsesquioxane: Cure behavior and toughening mechanisms”, J. Polym. Sci. Part B: Polym. Phys. 2003, 41, 3299–3313.
  • Akbari, B.; Bagheri, R. “Influence of nanoclay on morphology, mechanical properties and deformation mechanism of polystyrene”, Polym. - Plast. Technol. Eng. 2013, 53, 156–161.
  • Seltzer, R.; Kim, J.-K.; Mai, Y.-W. “Elevated temperature nanoindentation behaviour of polyamide 6”, Polym. Int. 2011, 60, 1753–1761.
  • Wang, G.-T.; Liu, H.-Y.; Yu, Z.-Z.; Mai, Y.-W. “Evaluation of methods for stiffness predictions of polymer/clay nanocomposites”, J. Reinf. Plast. Comp. 2009, 28, 1625–1649.
  • Shen, L.; Wang, L.; Liu, T.; He, C. “Nanoindentation and morphological studies of epoxy nanocomposites”, Macromol. Mater. Eng. 2006, 291, 1358–1366.
  • Li, X.; Gao, H.; Scrivens, W. A.; Fei, D.; Xu, X.; Sutton, M. A.; Reynolds, A. P.; Myrick, M. L. “Nanomechanical characterization of single-walled carbon nanotube reinforced epoxy composites”, Nanotechnology 2004, 15, 1416–1423.
  • Anthoulis, G. I.; Kontou, E. “Micromechanical behaviour of particulate Polymer Nanocomposites”, Polymer 2008, 49, 1934–1942.
  • Cannillo, V.; Bondioli, F.; Lusvarghi, L.; Montorsi, M.; Avella, M.; Errico, M. E.; Malinconico, M. “Modeling of ceramic particles filled polymer-matrix nanocomposites”, Compos. Sci. Technol. 2006, 66, 1030–1037.
  • Odegard, G. M.; Clancy, T. C.; Gates, T. S. “Modeling of the mechanical properties of nanoparticle/polymer composites”, Polymer 2005, 46, 553–562.
  • Sheng, N.; Boyce, M. C.; Parks, D. M.; Rutledge, G. C.; Abes, J. I.; Cohen, R. E. “Multiscale micromechanical modeling of polymer/clay nanocomposites and the effective clay particle”, Polymer 2004, 45, 487–506.
  • Fornes, T. D.; Paul, D. R. “Modeling properties of nylon 6/clay nanocomposites using composite theories”, Polymer 2003, 44, 4993–5013.
  • Luo, J.-J.; Daniel, I. M. “Characterization and modeling of mechanical behavior of polymer/clay nanocomposites”, Compos. Sci. Technol. 2003, 63, 1607–1616.
  • Brune, D. A.; Bicerano, J. “Micromechanics of nanocomposites: Comparison of tensile and compressive elastic moduli, and prediction of effects of incomplete exfoliation and imperfect alignment on modulus”, Polymer 2002, 43, 369–387.
  • Frankland, S. J. V.; Harik, V. M.; Odegard, G. M.; Brenner, D. W.; Gates, T. S. “The stress–strain behavior of polymer–nanotube composites from molecular dynamics simulation”, Compos. Sci. Technol. 2003, 63, 1655–1661.
  • Schadler, L.; Brinson, L.; Sawyer, W. “Polymer nanocomposites: A small part of the story”, JOM 2007, 59, 53–60.
  • Miltner, H. E.; Assche, G. V.; Pozsgay, A.; Pukánszky, B.; Mele, B. V. “Restricted chain segment mobility in poly(amide) 6/clay nanocomposites evidenced by quasi-isothermal crystallization”, Polymer 2006, 47, 826–835.
  • Ciprari, D.; Jacob, K.; Tannenbaum, R. “Characterization of polymer nanocomposite interphase and its impact on mechanical properties”, Macromolecules 2006, 39, 6565–6573.
  • Pukánszky, B. “Interfaces and interphases in multicomponent materials: Past, present, future”, Eur. Polym. J. 2005, 41, 645–662.
  • Desai, A. V.; Haque, M. A. “Mechanics of the interface for carbon nanotube–polymer composites”, Thin Wall. Struct. 2005, 43, 1787–1803.
  • Cech, V.; Palesch, E.; Lukes, J. “The glass fiber–polymer matrix interface/interphase characterized by nanoscale imaging techniques”, Compos. Sci. Technol. 2013, 83, 22–26.
  • Piggott, M. R.; Chua, P. S. “Recent studies of the glass fiber-polymer interphase”, Ind. Eng. Chem. Res. 1987, 26, 672–677.
  • Azeez, A. A.; Rhee, K. Y.; Park, S. J.; Hui, D. “Epoxy clay nanocomposites – processing, properties and applications: A review”, Compos. Part B- Eng. 2013, 45, 308–320.
  • Young, R. J.; Kinloch, I. A.; Gong, L.; Novoselov, K. S. “The mechanics of graphene nanocomposites: A review”, Compos. Sci. Technol. 2012, 72, 1459–1476.
  • Paul, D. R.; Robeson, L. M. “Polymer nanotechnology: Nanocomposites”, Polymer 2008, 49, 3187–3204.
  • Tjong, S. C. “Structural and mechanical properties of polymer nanocomposites”, Mater. Sci. Eng. R- Reports 2006, 53, 73–197.
  • Vaia, R. A.; Wagner, H. D. “Framework for nanocomposites”, Mater. Today 2004, 7, 32–37.
  • Alexandre, M.; Dubois, P. “Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials”, Mater. Sci. Eng. R- Reports 2000, 28, 1–63.
  • Sun, L.; Gibson, R. F.; Gordaninejad, F.; Suhr, J. “Energy absorption capability of nanocomposites: A review”, Compos. Sci. Technol. 2009, 69, 2392–2409.
  • Wu, S.; Guo, Q.; Zhang, T.; Mai, Y.-W. “Phase behavior and nanomechanical mapping of block ionomer complexes”, Soft Matter 2013, 9, 2662–2672.
  • Wu, S.; Guo, Q.; Kraska, M.; Stühn, B.; Mai, Y.-W. “Toughening epoxy thermosets with block ionomers: The role of phase domain size”, Macromolecules 2013, 46, 8190–8202.
  • Chen, J.; Taylor, A. “Epoxy modified with triblock copolymers: Morphology, mechanical properties and fracture mechanisms”, J. Mater. Sci. 2012, 47, 4546–4560.
  • Wu, S.; Guo, Q.; Peng, S.; Hameed, N.; Kraska, M.; Stühn, B.; Mai, Y.-W. “Toughening epoxy thermosets with block ionomer complexes: A nanostructure–mechanical property correlation”, Macromolecules 2012, 45, 3829–3840.
  • Kishi, H.; Kunimitsu, Y.; Imade, J.; Oshita, S.; Morishita, Y.; Asada, M. “Nano-phase structures and mechanical properties of epoxy/acryl triblock copolymer alloys”, Polymer 2011, 52, 760–768.
  • Hameed, N.; Guo, Q.; Xu, Z.; Hanley, T. L.; Mai, Y.-W. “Reactive block copolymer modified thermosets: Highly ordered nanostructures and improved properties”, Soft Matter 2010, 6, 6119–6129.
  • Liu, J.; Sue, H.-J.; Thompson, Z. J.; Bates, F. S.; Dettloff, M.; Jacob, G.; Verghese, N.; Pham, H. “Effect of crosslink density on fracture behavior of model epoxies containing block copolymer nanoparticles”, Polymer 2009, 50, 4683–4689.
  • Liu, J.; Sue, H.-J.; Thompson, Z. J.; Bates, F. S.; Dettloff, M.; Jacob, G.; Verghese, N.; Pham, H. “Nanocavitation in self-assembled amphiphilic block copolymer-modified epoxy”, Macromolecules 2008, 41, 7616–7624.
  • Hydro, R. M.; Pearson, R. A. “Epoxies toughened with triblock copolymers”, J. Polym. Sci. Part B- Polym. Phys. 2007, 45, 1470–1481.
  • Wu, J.; Thio, Y. S.; Bates, F. S. “Structure and properties of PBO–PEO diblock copolymer modified epoxy”, J. Polym. Sci. Part B- Polym. Phys. 2005, 43, 1950–1965.
  • Rebizant, V.; Venet, A.-S.; Tournilhac, F.; Girard-Reydet, E.; Navarro, C.; Pascault, J.-P.; Leibler, L. “Chemistry and mechanical properties of epoxy-based thermosets reinforced by reactive and nonreactive SBMX block copolymers”, Macromolecules 2004, 37, 8017–8027.
  • Rebizant, V.; Abetz, V.; Tournilhac, F.; Court, F.; Leibler, L. “Reactive tetrablock copolymers containing glycidyl methacrylate. Synthesis and morphology control in epoxy−amine networks”, Macromolecules 2003, 36, 9889–9896.
  • Adachi, T.; Osaki, M.; Araki, W.; Kwon, S.-C. “Fracture toughness of nano- and micro-spherical silica-particle-filled epoxy composites”, Acta Mater. 2008, 56, 2101–2109.
  • Kwon, S.-C.; Adachi, T. “Strength and fracture toughness of nano and micron-silica particles bidispersed epoxy composites: Evaluated by fragility parameter”, J. Mater. Sci. 2007, 42, 5516–5523.
  • Adachi, T.; Araki, W.; Nakahara, T.; Yamaji, A.; Gamou, M. “Fracture toughness of silica particulate-filled epoxy composite”, J. Appl. Polym. Sci. 2002, 86, 2261–2265.
  • Moloney, A.; Kausch, H.; Kaiser, T.; Beer, H. “Parameters determining the strength and toughness of particulate filled epoxide resins”, J. Mater. Sci. 1987, 22, 381–393.
  • Young, R. J.; Beaumont, P. W. R. “Failure of brittle polymers by slow crack growth”, J. Mater. Sci. 1977, 12, 684–692.
  • Nakamura, Y.; Yamaguchi, M.; Okubo, M.; Matsumoto, T. “Effect of particle size on the fracture toughness of epoxy resin filled with spherical silica”, Polymer 1992, 33, 3415–3426.
  • Nakamura, Y.; Okabe, S.; Iida, T. “Effects of particle shape, size and interfacial adhesion on the fracture strength of silica-filled epoxy resin”, Polym. Polym. Compos. 1997, 7, 177–186.
  • Cantwell, W. J.; Roulin-Moloney, A. C.; Kaiser, T. “Fractography of unfilled and particulate-filled epoxy resins”, J. Mater. Sci. 1988, 23, 1615–1631.
  • Moloney, A. C.; Kausch, H. H.; Stieger, H. R. “The fracture of particulate-filled epoxide resins”, J. Mater. Sci. 1983, 18, 208–216.
  • Dittanet, P.; Pearson, R. A. “Effect of silica nanoparticle size on toughening mechanisms of filled epoxy”, Polymer 2012, 53, 1890–1905.
  • Liu, H.-Y.; Wang, G.-T.; Mai, Y.-W.; Zeng, Y. “On fracture toughness of nano-particle modified epoxy”, Compos. Part B- Eng. 2011, 42, 2170–2175.
  • Liang, Y. L.; Pearson, R. A. “Toughening mechanisms in epoxy–silica nanocomposites (ESNs)”, Polymer 2009, 50, 4895–4905.
  • Ma, J.; Mo, M.-S.; Du, X.-S.; Rosso, P.; Friedrich, K.; Kuan, H.-C. “Effect of inorganic nanoparticles on mechanical property, fracture toughness and toughening mechanism of two epoxy systems”, Polymer 2008, 49, 3510–3523.
  • Blackman, B.; Kinloch, A.; Sohn Lee, J.; Taylor, A.; Agarwal, R.; Schueneman, G.; Sprenger, S. “The fracture and fatigue behaviour of nano-modified epoxy polymers”, J. Mater. Sci. 2007, 42, 7049–7051.
  • Johnsen, B. B.; Kinloch, A. J.; Mohammed, R. D.; Taylor, A. C.; Sprenger, S. “Toughening mechanisms of nanoparticle-modified epoxy polymers”, Polymer 2007, 48, 530–541.
  • Zhang, H.; Tang, L.-C.; Zhang, Z.; Friedrich, K.; Sprenger, S. “Fracture behaviours of in situ silica nanoparticle-filled epoxy at different temperatures”, Polymer 2008, 49, 3816–3825.
  • Rosso, P.; Ye, L.; Friedrich, K.; Sprenger, S. “A toughened epoxy resin by silica nanoparticle reinforcement”, J. Appl. Polym. Sci. 2006, 100, 1849–1855.
  • Zhang, H.; Zhang, Z.; Friedrich, K.; Eger, C. “Property improvements of in situ epoxy nanocomposites with reduced interparticle distance at high nanosilica content”, Acta Mater. 2006, 54, 1833–1842.
  • Ragosta, G.; Abbate, M.; Musto, P.; Scarinzi, G.; Mascia, L. “Epoxy-silica particulate nanocomposites: Chemical interactions, reinforcement and fracture toughness”, Polymer 2005, 46, 10506–10516.
  • Karger-Kocsis, J.; Gryshchuk, O.; Fröhlich, J.; Mülhaupt, R. “Interpenetrating vinylester/epoxy resins modified with organophilic layered silicates”, Compos. Sci. Technol. 2003, 63, 2045–2054.
  • Fu, S.-Y.; Feng, X.-Q.; Lauke, B.; Mai, Y.-W. “Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate–polymer composites”, Compos. Part B- Eng. 2008, 39, 933–961.
  • Green, D. L.; Lin, J. S.; Lam, Y.-F.; Hu, M. Z. C.; Schaefer, D. W.; Harris, M. T. “Size, volume fraction, and nucleation of Stober silica nanoparticles”, J. Colloid Interface Sci. 2003, 266, 346–358.
  • Rahman, I. A.; Padavettan, V. “Synthesis of silica nanoparticles by sol-gel: size-dependent properties, surface modification, and applications in silica-polymer nanocomposites: A review”, J. Nanomaterials 2012. Article ID 132424.
  • Singh, R. P.; Zhang, M.; Chan, D. “Toughening of a brittle thermosetting polymer: Effects of reinforcement particle size and volume fraction”, J. Mater. Sci. 2002, 37, 781–788.
  • Bagheri, R.; Pearson, R. A. “Role of particle cavitation in rubber-toughened epoxies: II. Inter-particle distance”, Polymer 2000, 41, 269–276.
  • Kozii, V. V.; Rozenberg, B. A. “Mechanisms of energy dissipation”, Polym. Sci. 1992, 34, 919–951.
  • Pearson, R. A.; Yee, A. F. “Influence of particle size and particle size distribution on toughening mechanisms in rubber-modified epoxies”, J. Mater. Sci. 1991, 26, 3828–3844.
  • Guild, F. J.; Young, R. J. “A predictive model for particulate-filled composite materials”, J. Mater. Sci. 1989, 24, 298–306.
  • Yee, A. F.; Pearson, R. A. “Toughening mechanisms in elastomer-modified epoxies”, J. Mater. Sci. 1986, 21, 2462–2474.
  • Lange, F. F.; Radford, K. C. “Fracture energy of an epoxy composite system”, J. Mater. Sci. 1971, 6, 1197–1203.
  • Bray, D. J.; Dittanet, P.; Guild, F. J.; Kinloch, A. J.; Masania, K.; Pearson, R. A.; Taylor, A. C. “The modelling of the toughening of epoxy polymers via silica nanoparticles: The effects of volume fraction and particle size”, Polymer 2013, 54, 7022–7032.
  • Dittanet, P.; Pearson, R. A. “Effect of bimodal particle size distributions on the toughening mechanisms in silica nanoparticle filled epoxy resin”, Polymer 2013, 54, 1832–1845.
  • Kawaguchi, T.; Pearson, R. A. “The effect of particle–matrix adhesion on the mechanical behavior of glass filled epoxies. Part 2. A study on fracture toughness”, Polymer 2003, 44, 4239–4247.
  • Moloney, A. C.; Kausch, H. H.; Stieger, H. R. “The fracture of particulate-filled epoxide resins”, J. Mater. Sci. 1984, 19, 1125–1130.
  • Zhao, S.; Schadler, L. S.; Duncan, R.; Hillborg, H.; Auletta, T. “Mechanisms leading to improved mechanical performance in nanoscale alumina filled epoxy”, Compos. Sci. Technol. 2008, 68, 2965–2975.
  • Zunjarrao, S. C.; Singh, R. P. “Characterization of the fracture behavior of epoxy reinforced with nanometer and micrometer sized aluminum particles”, Compos. Sci. Technol. 2006, 66, 2296–2305.
  • Chang, T. D.; Brittain, J. O. “Studies of epoxy resin systems: Part D: Fracture toughness of an epoxy resin: A study of the effect of crosslinking and sub-Tg aging”, Polym. Eng. Sci. 1982, 22, 1228–1236.
  • Cherry, B. W.; Thomson, K. W. “The fracture of highly crosslinked polymers”, J. Mater. Sci. 1981, 16, 1913–1924.
  • Scott, J. M.; Wells, G. M.; Phillips, D. C. “Low temperature crack propagation in an epoxide resin”, J. Mater. Sci. 1980, 15, 1436–1448.
  • Meeks, A. C. “Fracture and mechanical properties of epoxy resins and rubber-modified epoxy resins”, Polymer 1974, 15, 675–681.
  • Thompson, Z. J.; Hillmyer, M. A.; Liu, J.; Sue, H.-J.; Dettloff, M.; Bates, F. S. “Block copolymer toughened epoxy: Role of cross-link density”, Macromolecules 2009, 42, 2333–2335.
  • Pearson, R. A.; Yee, A. F. “Toughening mechanisms in elastomer-modified epoxies”, J. Mater. Sci. 1989, 24, 2571–2580.
  • Wetzel, B.; Rosso, P.; Haupert, F.; Friedrich, K. “Epoxy nanocomposites – fracture and toughening mechanisms”, Eng. Fract. Mech. 2006, 73, 2375–2398.
  • Hsieh, T.; Kinloch, A.; Masania, K.; Sohn Lee, J.; Taylor, A.; Sprenger, S. “The toughness of epoxy polymers and fibre composites modified with rubber microparticles and silica nanoparticles”, J. Mater. Sci. 2010, 45, 1193–1210.
  • Huang, Y.; Kinloch, A. J. “Modelling of the toughening mechanisms in rubber-modified epoxy polymers”, J. Mater. Sci. 1992, 27, 2763–2769.
  • Dekkers, M. E. J.; Heikens, D. “Shear band formation in polycarbonate-glass bead composites”, J. Mater. Sci. 1984, 19, 3271–3275.
  • Sultan, J. N.; McGarry, F. J. “Effect of rubber particle size on deformation mechanisms in glassy epoxy”, Polym. Eng. Sci. 1973, 13, 29–34.
  • Garg, A. C.; Mai, Y.-W. “Failure mechanisms in toughened epoxy resins: A review”, Compos. Sci. Technol. 1988, 31, 179–223.
  • Bagheri, R.; Marouf, B. T.; Pearson, R. A. “Rubber-toughened epoxies: A critical review”, Polym. Rev. 2009, 49, 201–225.
  • Jansen, B. J. P.; Tamminga, K. Y.; Meijer, H. E. H.; Lemstra, P. J. “Preparation of thermoset rubbery epoxy particles as novel toughening modifiers for glassy epoxy resins”, Polymer 1999, 40, 5601–5607.
  • Kim, H. S.; Ma, P. “Correlation between stress-whitening and fracture toughness in rubber-modified epoxies”, J. Appl. Polym. Sci. 1996, 61, 659–662.
  • Chen, J.; Kinloch, A. J.; Sprenger, S.; Taylor, A. C. “The mechanical properties and toughening mechanisms of an epoxy polymer modified with polysiloxane-based core-shell particles”, Polymer 2013, 54, 4276–4289.
  • Lovell, P. A.; McDonald, J.; Saunders, D. E. J.; Young, R. J. “Studies of rubber-toughened poly(methyl methacrylate): 1. Preparation and thermal properties of blends of poly(methyl methacrylate) with multiple-layer toughening particles”, Polymer 1993, 34, 61–69.
  • Liu, J.; Thompson, Z. J.; Sue, H.-J.; Bates, F. S.; Hillmyer, M. A.; Dettloff, M.; Jacob, G.; Verghese, N.; Pham, H. “Toughening of epoxies with block copolymer micelles of wormlike morphology”, Macromolecules 2010, 43, 7238–7243.
  • Oldak, R. K.; Hydro, R. M.; Pearson, R. A. “On the Use of Triblock Copolymers as Toughening Agents for Epoxies”, Adhesion Society: Tampa, FL, 2007.
  • Ruzette, A.-V.; Leibler, L. “Block copolymers in tomorrow's plastics”, Nat. Mater. 2005, 4, 19–31.
  • Ritzenthaler, S.; Court, F.; David, L.; Girard-Reydet, E.; Leibler, L.; Pascault, J. P. “ABC triblock copolymers/epoxy−diamine blends. 1. Keys to achieve nanostructured thermosets”, Macromolecules 2002, 35, 6245–6254.
  • Williams, J. G. “Particle toughening of polymers by plastic void growth”, Compos. Sci. Technol. 2010, 70, 885–891.
  • Bagheri, R.; Pearson, R. A. “Role of blend morphology in rubber-toughened polymers”, J. Mater. Sci. 1996, 31, 3945–3954.
  • Yamanaka, K.; Takagi, Y.; Inoue, T. “Reaction-induced phase separation in rubber-modified epoxy resins”, Polymer 1989, 30, 1839–1844.
  • Marouf, B. T.; Pearson, R. A.; Bagheri, R. “Anomalous fracture behavior in an epoxy-based hybrid composite”, Mater. Sci. Eng. A 2009, 515, 49–58.
  • Pearson, R. A.; Bacigalupo, L. N.; Liang, Y. L.; Marouf, B. T.; Oldak, R. K. “Plastic zone size: Fracture toughness correlations in rubber-modified epoxies”, 31st Annual Meeting of the Adhesion Society, Austin, TX, Feb. 17-20, 2008, pp. 27–29.
  • Wang, G.-T. “On fracture toughness and fatigue resistance of polymer/nanoparticle composites”, Ph.D. Dissertation, University of Sydney, Australia, 2010.
  • Sprenger, S. “Epoxy resins modified with elastomers and surface-modified silica nanoparticles”, Polymer 2013, 54, 4790–4797.
  • Liang, Y. L.; Pearson, R. A. “The toughening mechanism in hybrid epoxy-silica-rubber nanocomposites (HESRNs)”, Polymer 2010, 51, 4880–4890.
  • Shayegan, M.; Bagheri, R. “The simultaneous effect of silica nanoparticles and rubber particles on the toughness of epoxy polymer”, Int. J. Nanomanufacturing 2010, 5, 232–244.
  • Kinloch, A.; Mohammed, R.; Taylor, A.; Eger, C.; Sprenger, S.; Egan, D. “The effect of silica nano particles and rubber particles on the toughness of multiphase thermosetting epoxy polymers”, J. Mater. Sci. 2005, 40, 5083–5086.
  • Gómez-del Río, T.; Rodríguez, J.; Pearson, R. A. “Compressive properties of nanoparticle modified epoxy resin at different strain rates”, Compos. Part B- Eng. 2014, 57, 173–179.
  • Gkikas, G.; Barkoula, N. M.; Paipetis, A. S. “Effect of dispersion conditions on the thermo-mechanical and toughness properties of multi walled carbon nanotubes-reinforced epoxy”, Compos. Part B- Eng. 2012, 43, 2697–2705.
  • Spitalsky, Z.; Tasis, D.; Papagelis, K.; Galiotis, C. “Carbon nanotube–polymer composites: Chemistry, processing, mechanical and electrical properties”, Prog. Polym. Sci. 2010, 35, 357–401.
  • Byrne, M. T.; Gun'ko, Y. K. “Recent advances in research on carbon nanotube – polymer composites”, Adv. Mater. 2010, 22, 1672–1688.
  • Chou, T.-W.; Gao, L.; Thostenson, E. T.; Zhang, Z.; Byun, J.-H. “An assessment of the science and technology of carbon nanotube-based fibers and composites”, Compos. Sci. Technol. 2010, 70, 1–19.
  • Wichmann, M. H. G.; Schulte, K.; Wagner, H. D. “On nanocomposite toughness”, Compos. Sci. Technol. 2008, 68, 329–331.
  • Yu, N.; Zhang, Z. H.; He, S. Y. “Fracture toughness and fatigue life of MWCNT/epoxy composites”, Mater. Sci. Eng. A 2008, 494, 380–384.
  • Guzmán de Villoria, R.; Miravete, A. “Mechanical model to evaluate the effect of the dispersion in nanocomposites”, Acta Mater. 2007, 55, 3025–3031.
  • Lau, K.-T.; Gu, C.; Hui, D. “A critical review on nanotube and nanotube/nanoclay related polymer composite materials”, Compos. Part B- Eng. 2006, 37, 425–436.
  • Moniruzzaman, M.; Winey, K. I. “Polymer nanocomposites containing carbon nanotubes”, Macromolecules 2006, 39, 5194–5205.
  • Gojny, F. H.; Wichmann, M. H. G.; Fiedler, B.; Bauhofer, W.; Schulte, K. “Influence of nano-modification on the mechanical and electrical properties of conventional fibre-reinforced composites”, Compos. Part A- Appl. S. 2005, 36, 1525–1535.
  • Xie, X.-L.; Mai, Y.-W.; Zhou, X.-P. “Dispersion and alignment of carbon nanotubes in polymer matrix: A review”, Mater. Sci. Eng. R- Reports 2005, 49, 89–112.
  • Guo, P.; Chen, X.; Gao, X.; Song, H.; Shen, H. “Fabrication and mechanical properties of well-dispersed multiwalled carbon nanotubes/epoxy composites”, Compos. Sci. Technol. 2007, 67, 3331–3337.
  • Park, S.-J.; Jeong, H.-J.; Nah, C. “A study of oxyfluorination of multi-walled carbon nanotubes on mechanical interfacial properties of epoxy matrix nanocomposites”, Mater. Sci. Eng. A 2004, 385, 13–16.
  • Li, S.; Wang, F.; Wang, Y.; Wang, J.; Ma, J.; Xiao, J. “Effect of acid and TETA modification on mechanical properties of MWCNTs/epoxy composites”, J. Mater. Sci. 2008, 43, 2653–2658.
  • Yang, K.; Gu, M.; Guo, Y.; Pan, X.; Mu, G. “Effects of carbon nanotube functionalization on the mechanical and thermal properties of epoxy composites”, Carbon 2009, 47, 1723–1737.
  • Chen, X.; Wang, J.; Lin, M.; Zhong, W.; Feng, T.; Chen, X.; Chen, J.; Xue, F. “Mechanical and thermal properties of epoxy nanocomposites reinforced with amino-functionalized multi-walled carbon nanotubes”, Mater. Sci. Eng. A 2008, 492, 236–242.
  • Yang, Y.-K.; Yu, L.-J.; Peng, R.-G.; Huang, Y.-L.; He, C.-E.; Liu, H.-Y.; Wang, X.-B.; Xie, X.-L.; Mai, Y.-W. “Incorporation of liquid-like multiwalled carbon nanotubes into an epoxy matrix by solvent-free processing”, Nanotechnology 2012, 23, 225701.
  • Fiedler, B.; Gojny, F. H.; Wichmann, M. H. G.; Nolte, M. C. M.; Schulte, K. “Fundamental aspects of nano-reinforced composites”, Compos. Sci. Technol. 2006, 66, 3115–3125.
  • Ganguli, S.; Bhuyan, M.; Allie, L.; Aglan, H. “Effect of multi-walled carbon nanotube reinforcement on the fracture behavior of a tetrafunctional epoxy”, J. Mater. Sci. 2005, 40, 3593–3595.
  • Gojny, F. H.; Wichmann, M. H. G.; Köpke, U.; Fiedler, B.; Schulte, K. “Carbon nanotube-reinforced epoxy-composites: enhanced stiffness and fracture toughness at low nanotube content”, Compos. Sci. Technol. 2004, 64, 2363–2371.
  • Liu, L.; Wagner, H. D. “Rubbery and glassy epoxy resins reinforced with carbon nanotubes”, Compos. Sci. Technol. 2005, 65, 1861–1868.
  • Rana, S.; Alagirusamy, R.; Joshi, M. “A review on carbon epoxy nanocomposites”, J. Reinf. Plast. Comp. 2009, 28, 461–487.
  • Rahmat, M.; Hubert, P. “Carbon nanotube–polymer interactions in nanocomposites: A review”, Compos. Sci. Technol. 2011, 72, 72–84.
  • Lee, J. H.; Rhee, K. Y.; Lee, J. H. “Effects of moisture absorption and surface modification using 3-aminopropyltriethoxysilane on the tensile and fracture characteristics of MWCNT/epoxy nanocomposites”, Appl. Surf. Sci. 2010, 256, 7658–7667.
  • Lachman, N.; Daniel Wagner, H. “Correlation between interfacial molecular structure and mechanics in CNT/epoxy nano-composites”, Compos. Part A- Appl. S. 2010, 41, 1093–1098.
  • Chen, Z.-K.; Yang, J.-P.; Ni, Q.-Q.; Fu, S.-Y.; Huang, Y.-G. “Reinforcement of epoxy resins with multi-walled carbon nanotubes for enhancing cryogenic mechanical properties”, Polymer 2009, 50, 4753–4759.
  • Hernández-Pérez, A.; Avilés, F.; May-Pat, A.; Valadez-González, A.; Herrera-Franco, P. J.; Bartolo-Pérez, P. “Effective properties of multiwalled carbon nanotube/epoxy composites using two different tubes”, Compos. Sci. Technol. 2008, 68, 1422–1431.
  • Ci, L.; Bai, J. “The reinforcement role of carbon nanotubes in epoxy composites with different matrix stiffness”, Compos. Sci. Technol. 2006, 66, 599–603.
  • Thostenson, E. T.; Chou, T.-W. “Processing-structure-multi-functional property relationship in carbon nanotube/epoxy composites”, Carbon 2006, 44, 3022–3029.
  • Shelimov, K. B.; Esenaliev, R. O.; Rinzler, A. G.; Huffman, C. B.; Smalley, R. E. “Purification of single-wall carbon nanotubes by ultrasonically assisted filtration”, Chem. Phys. Lett. 1998, 282, 429–434.
  • Gojny, F. H.; Wichmann, M. H. G.; Fiedler, B.; Schulte, K. “Influence of different carbon nanotubes on the mechanical properties of epoxy matrix composites: A comparative study”, Compos. Sci. Technol. 2005, 65, 2300–2313.
  • Ajayan, P. M.; Schadler, L. S.; Giannaris, C.; Rubio, A. “Single-walled carbon nanotube–polymer composites: Strength and weakness”, Adv. Mater. 2000, 12, 750–753.
  • Ma, P. C.; Kim, J.-K.; Tang, B. Z. “Effects of silane functionalization on the properties of carbon nanotube/epoxy nanocomposites”, Compos. Sci. Technol. 2007, 67, 2965–2972.
  • Qian, D.; Dickey, E. C. “In-situ transmission electron microscopy studies of polymer–carbon nanotube composite deformation”, J. Microsc. 2001, 204, 39–45.
  • Deng, S.; Zhang, J.; Ye, L. “Halloysite–epoxy nanocomposites with improved particle dispersion through ball mill homogenisation and chemical treatments”, Compos. Sci. Technol. 2009, 69, 2497–2505.
  • Deng, S.; Zhang, J.; Ye, L.; Wu, J. “Toughening epoxies with halloysite nanotubes”, Polymer 2008, 49, 5119–5127.
  • Tang, Y.; Deng, S.; Ye, L.; Yang, C.; Yuan, Q.; Zhang, J.; Zhao, C. “Effects of unfolded and intercalated halloysites on mechanical properties of halloysite–epoxy nanocomposites”, Compos. Part A- Appl. S. 2011, 42, 345–354.
  • Tang, Y.; Ye, L.; Deng, S.; Yang, C.; Yuan, W. “Influences of processing methods and chemical treatments on fracture toughness of halloysite–epoxy composites”, Mater. Design 2012, 42, 471–477.
  • Yang, L.; Zhang, C.; Pilla, S.; Gong, S. “Polybenzoxazine-core shell rubber–carbon nanotube nanocomposites”, Compos. Part A- Appl. S. 2008, 39, 1653–1659.
  • Kornmann, X.; Lindberg, H.; Berglund, L. A. “Synthesis of epoxy–clay nanocomposites: influence of the nature of the clay on structure”, Polymer 2001, 42, 1303–1310.
  • Yasmin, A.; Abot, J. L.; Daniel, I. M. “Processing of clay/epoxy nanocomposites by shear mixing”, Scr. Mater. 2003, 49, 81–86.
  • Lan, T.; Pinnavaia, T. J. “Clay-reinforced epoxy nanocomposites”, Chem. Mater. 1994, 6, 2216–2219.
  • Zerda, A. S.; Lesser, A. J. “Intercalated clay nanocomposites: Morphology, mechanics, and fracture behavior”, J. Polym. Sci. Part B- Polym. Phys. 2001, 39, 1137–1146.
  • Zilg, C.; Mülhaupt, R.; Finter, J. “Morphology and toughness/stiffness balance of nanocomposites based upon anhydride-cured epoxy resins and layered silicates”, Macromol. Chem. Phys. 1999, 200, 661–670.
  • Brunner, A. J.; Necola, A.; Rees, M.; Gasser, P.; Kornmann, X.; Thomann, R.; Barbezat, M. “The influence of silicate-based nano-filler on the fracture toughness of epoxy resin”, Eng. Fract. Mech. 2006, 73, 2336–2345.
  • Isik, I.; Yilmazer, U.; Bayram, G. “Impact modified epoxy/montmorillonite nanocomposites: Synthesis and characterization”, Polymer 2003, 44, 6371–6377.
  • Qi, B.; Zhang, Q. X.; Bannister, M.; Mai, Y. W. “Investigation of the mechanical properties of DGEBA-based epoxy resin with nanoclay additives”, Compos. Struct. 2006, 75, 514–519.
  • Messersmith, P. B.; Giannelis, E. P. “Synthesis and characterization of layered silicate-epoxy nanocomposites”, Chem. Mater. 1994, 6, 1719–1725.
  • Kinloch, A.; Taylor, A. “The mechanical properties and fracture behaviour of epoxy-inorganic micro- and nano-composites”, J. Mater. Sci. 2006, 41, 3271–3297.
  • Lan, T.; Kaviratna, P. D.; Pinnavaia, T. J. “Mechanism of clay tactoid exfoliation in epoxy-clay nanocomposites”, Chem. Mater. 1995, 7, 2144–2150.
  • Liu, W.; Hoa, S. V.; Pugh, M. “Fracture toughness and water uptake of high-performance epoxy/nanoclay nanocomposites”, Compos. Sci. Technol. 2005, 65, 2364–2373.
  • Miyagawa, H.; Drzal, L. T. “The effect of chemical modification on the fracture toughness of montmorillonite clay/epoxy nanocomposites”, J. Adhes. Sci. Technol. 2004, 18, 1571–1588.
  • Wang, K.; Chen, L.; Wu, J.; Toh, M. L.; He, C.; Yee, A. F. “Epoxy nanocomposites with highly exfoliated clay:  Mechanical properties and fracture mechanisms”, Macromolecules 2005, 38, 788–800.
  • Wang, L.; Wang, K.; Chen, L.; Zhang, Y.; He, C. “Preparation, morphology and thermal/mechanical properties of epoxy/nanoclay composite”, Compos. Part A- Appl. S. 2006, 37, 1890–1896.
  • Kim, B. C.; Park, S. W.; Lee, D. G. “Fracture toughness of the nano-particle reinforced epoxy composite”, Compos. Struct. 2008, 86, 69–77.
  • Liu, W.; Hoa, S. V.; Pugh, M. “Organoclay-modified high performance epoxy nanocomposites”, Compos. Sci. Technol. 2005, 65, 307–316.
  • Becker, O.; Varley, R.; Simon, G. “Morphology, thermal relaxations and mechanical properties of layered silicate nanocomposites based upon high-functionality epoxy resins”, Polymer 2002, 43, 4365–4373.
  • He, J.; Raghavan, D.; Hoffman, D.; Hunston, D. “The influence of elastomer concentration on toughness in dispersions containing preformed acrylic elastomeric particles in an epoxy matrix”, Polymer 1999, 40, 1923–1933.
  • Kinloch, A. J.; Shaw, S. J.; Tod, D. A.; Hunston, D. L. “Deformation and fracture behaviour of a rubber-toughened epoxy: 1. Microstructure and fracture studies”, Polymer 1983, 24, 1341–1354.
  • Ratna, D.; Dutta, H.; Banthia, A. K. “Improvement of adhesive properties of rubbery epoxy using organoclay”, J. Adhes. Sci. Technol. 2006, 20, 555–561.
  • Kuila, T.; Bose, S.; Mishra, A. K.; Khanra, P.; Kim, N. H.; Lee, J. H. “Chemical functionalization of graphene and its applications”, Prog. Mater. Sci. 2012, 57, 1061–1105.
  • Rafiee, M. A.; Rafiee, J.; Srivastava, I.; Wang, Z.; Song, H.; Yu, Z.-Z.; Koratkar, N. “Fracture and fatigue in graphene nanocomposites”, Small 2010, 6, 179–183.
  • Rafiee, M. A.; Rafiee, J.; Wang, Z.; Song, H.; Yu, Z.-Z.; Koratkar, N. “Enhanced mechanical properties of nanocomposites at low graphene content”, ACS Nano 2009, 3, 3884–3890.
  • Wang, X.; Jin, J.; Song, M. “An investigation of the mechanism of graphene toughening epoxy”, Carbon 2013, 65, 324–333.
  • Tang, L.-C.; Wan, Y.-J.; Yan, D.; Pei, Y.-B.; Zhao, L.; Li, Y.-B.; Wu, L.-B.; Jiang, J.-X.; Lai, G.-Q. “The effect of graphene dispersion on the mechanical properties of graphene/epoxy composites”, Carbon 2013, 60, 16–27.
  • Ahmadi-Moghadam, B.; Taheri, F. “Fracture and toughening mechanisms of GNP-based nanocomposites in modes I and II fracture”, Eng. Fract. Mech. 2014, 131, 329–339.
  • Chandrasekaran, S.; Sato, N.; Tölle, F.; Mülhaupt, R.; Fiedler, B.; Schulte, K. “Fracture toughness and failure mechanism of graphene based epoxy composites”, Compos. Sci. Technol. 2014, 97, 90–99.
  • Zaman, I.; Phan, T. T.; Kuan, H.-C.; Meng, Q.; Bao La, L. T.; Luong, L.; Youssf, O.; Ma, J. “Epoxy/graphene platelets nanocomposites with two levels of interface strength”, Polymer 2011, 52, 1603–1611.
  • Shokrieh, M. M.; Ghoreishi, S. M.; Esmkhani, M.; Zhao, Z. “Effects of graphene nanoplatelets and graphene nanosheets on fracture toughness of epoxy nanocomposites”, Fatigue Fract. Eng. Mater. Struct. 2014, 37, 1116–1123.
  • Yang, Y.-K.; He, C.-E.; Peng, R.-G.; Baji, A.; Du, X.-S.; Huang, Y.-L.; Xie, X.-L.; Mai, Y.-W. “Non-covalently modified graphene sheets by imidazolium ionic liquids for multifunctional polymer nanocomposites”, J. Mater. Chem. 2012, 22, 5666–5675.
  • Pearson, R. A.; Yee, A. F. “Toughening mechanisms in elastomer-modified epoxies”, J. Mater. Sci. 1986, 21, 2475–2488.
  • Balakrishnan, S.; Start, P. R.; Raghavan, D.; Hudson, S. D. “The influence of clay and elastomer concentration on the morphology and fracture energy of preformed acrylic rubber dispersed clay filled epoxy nanocomposites”, Polymer 2005, 46, 11255–11262.
  • Fang, Z.; Shi, H.; Gu, A.; Feng, Y. “Effect of bentonite on the structure and mechanical properties of CE/CTBN system”, J. Mater. Sci. 2007, 42, 4603–4608.
  • Fröhlich, J.; Thomann, R.; Gryshchuk, O.; Karger-Kocsis, J.; Mülhaupt, R. “High-performance epoxy hybrid nanocomposites containing organophilic layered silicates and compatibilized liquid rubber”, J. Appl. Polym. Sci. 2004, 92, 3088–3096.
  • Fröhlich, J.; Thomann, R.; Mülhaupt, R. “Toughened epoxy hybrid nanocomposites containing both an organophilic layered silicate filler and a compatibilized liquid rubber”, Macromolecules 2003, 36, 7205–7211.
  • Gam, K. T.; Miyamoto, M.; Nishimura, R.; Sue, H. J. “Fracture behavior of core-shell rubber–modified clay-epoxy nanocomposites”, Polym. Eng. Sci. 2003, 43, 1635–1645.
  • Liu, W.; Hoa, S. V.; Pugh, M. “Morphology and performance of epoxy nanocomposites modified with organoclay and rubber”, Polym. Eng. Sci. 2004, 44, 1178–1186.
  • Bashar, M.; Sundararaj, U.; Mertiny, P. “Microstructure and mechanical properties of epoxy hybrid nanocomposites modified with acrylic tri-block-copolymer and layered-silicate nanoclay”, Compos. Part A- Appl. S. 2012, 43, 945–954.
  • Marouf, B. T.; Pearson, R. A.; Bagheri, R. “Toughening mechanisms in montmorillonite-rubber-epoxy hybrid nanocomposites”, 31st Annual Meeting of the Adhesion Society, Austin, TX, Feb. 17-20, 2008, pp. 103–105.
  • Subramaniyan, A. K.; Sun, C. T. “Toughening polymeric composites using nanoclay: Crack tip scale effects on fracture toughness”, Compos. Part A- Appl. S. 2007, 38, 34–43.
  • Njuguna, J.; Pielichowski, K.; Alcock, J. R. “Epoxy-based fibre reinforced nanocomposites”, Adv. Eng. Mater. 2007, 9, 835–847.
  • Du, X.; Liu, H.-Y.; Xu, F.; Zeng, Y.; Mai, Y.-W. “Flame synthesis of carbon nanotubes onto carbon fiber woven fabric and improvement of interlaminar toughness of composite laminates”, Compos. Sci. Technol. 2014, 101, 159–166.
  • Prolongo, S. G.; Gude, M. R.; Ureña, A. Nanoreinforced Adhesives, In Nanofibers,Ch. 3; Kumar A. (Ed.); InTech 2010, pp. 39–68.
  • Lu, C.; Mai, Y.-W. “Influence of the aspect ratio on barrier properties of polymer-clay nanocomposites”, Phys. Rev. Lett. 2005, 95, 088303.
  • Thompson, V. P.; Watson, T. F.; Marshall, G. W.; Blackman, B. R. K.; Stansbury, J. W.; Schadler, L. S.; Pearson, R. A.; Libanori, R. “Outside-the-(cavity-prep)-box thinking”, Adv. Dent. Res. 2013, 25, 24–32.
  • Barua, S.; Dutta, N.; Karmakar, S.; Chattopadhyay, P.; Aidew, L.; Buragohain, A. K.; Karak, N. “Biocompatible high performance hyperbranched epoxy/clay nanocomposite as an implantable material”, Biomed. Mater. 2014, 9, 025006.
  • Li, Y.-Q.; Fu, S.-Y.; Yang, Y.; Mai, Y.-W. “Facile synthesis of highly transparent Polymer Nanocomposites by introduction of core-shell structured nanoparticles”, Chem. Mater. 2008, 20, 2637–2643.
  • Ardebili, W.; Pecht, M. Encapsulation Technologies for Electronic Packaging; Elsevier: Oxford, 2009.
  • Cui, W.; Du, F.; Zhao, J.; Zhang, W.; Yang, Y.; Xie, X.; Mai, Y.-W. “Improving thermal conductivity while retaining high electrical resistivity of epoxy composites by incorporating silica-coated multi-walled carbon nanotubes”, Carbon 2011, 49, 495–500.
  • Chen, C.; Tang, Y.; Ye, Y. S.; Xue, Z.; Xue, Y.; Xie, X.; Mai, Y.-W. “High-performance epoxy/silica coated silver nanowire composites as underfill material for electronic packaging”, Compos. Sci. Technol. 2014, 105, 80–85.
  • Dasari, A.; Yu, Z.-Z.; Cai, G.-P.; Mai, Y.-W. “Recent developments in the fire retardancy of polymeric materials”, Prog. Polym. Sci. 2013, 38, 1357–1387.
  • Yan, W.; Phung, B. T.; Han, Z. J.; Ostrikov, K. “Characteristics of epoxy Resin/SiO2 nanocomposite insulation: Effects of plasma surface treatment on the nanoparticles”, J. Nanosci. Nanotech. 2013, 13, 3371–3376.
  • Singha, S.; Thomas, M. J. “Dielectric properties of epoxy nanocomposites”, Dielectrics and Electrical Insulation, IEEE Transactions 2008, 15, 12–23.
  • Mai, Y.-W.; Yu, Z. Z. (Eds.) Polymer Nanocomposites; Woodhead Publishing Ltd: Cambridge, UK, 2006.
  • Tjong, S. C.; Mai, Y.-W. (Eds.) Physical Properties and Applications of Polymer Nanocomposites; Woodhead Publishing Ltd: Cambridge, UK, 2010.
  • Dasari, A. (Ed.). Functional and Physical Properties of Polymer Nanocomposites; Wiley: West Sussex, UK, 2015.
  • Friedrich, K.; Brewer, U. (Eds.) Multi-Functionality of Polymer Composites - Challenges and New Solutions; Elsevier: Oxford, UK, 2015.
  • Chrzanowski, W.; Kim, S. Y.; Abou Neel, E. A. “Biomedical applications of clay”, Aust. J. Chem. 2013, 66, 1315–1322.
  • Ma, C.; Liu, H.-Y.; Du, X.; Mach, L.; Xu, F.; Mai, Y.-W. “Fracture resistance, thermal and electrical properties of epoxy composites containing aligned carbon nanotubes by low magnetic field”, Comp. Sci. Tech. 2015, 114, 126–135.
  • Jia, J.; Sun, X.; Lin, X.; Shen, X.; Mai, Y.-W.; Kim, J.-K. “Exceptional electrical conductivity and fracture resistance of 3D interconnected graphene foam/epoxy composites”, ACS Nano 2014, 8, 5774–5783.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.