3,162
Views
108
CrossRef citations to date
0
Altmetric
Reviews

Modeling of Polymer Structure and Conformations in Polymer Nanocomposites from Atomistic to Mesoscale: A Review

, &

References

  • Usuki, A.; Kawasumi, M.; Kojima, Y.; Okada, A.; Kurauchi, T.; Kamigaito, O. “Swelling behaviour of Montmorillonitte cation exchanged for ω-amino acids by ϵ-caprolactam”, J. Mater. Res. 1993, 8, 1174–1178.
  • Kojima, Y.; Usuki, A.; Kawasumi, M.; Okada, A.; Fukushimay, Y.; Kurauchi, T.; Kamigaito, O. “Mechanical properties of nylon 6-clay hybrid”, J. Mater. Res. 1993, 8, 1185–1189.
  • Sudeep, P. K; Emrick, T. “Polymer-nanoparticle composites: Preparative methods and electronically active materials”, Polym. Rev. 2007, 47, 155–163.
  • Homenick, C. M.; Lawson, G.; Adronov, A. “Polymer grafting of carbon nanotubes using living free-radical polymerization”, Polym. Rev. 2007, 47, 265–290.
  • Goettler, L. A.; Lee, K. Y.; Thakkar, H. “Layered silicate reinforced polymer nanocomposites: Development and applications”, Polym. Rev. 2007, 47, 291–317.
  • Qiu, K. Y.; Netravali, A. N. “A review of fabrication and applications of bacterial cellulose based nanocomposites”, Polym. Rev. 2014, 54, 598–626.
  • Crosby, A.; Lee, J. Y. “Polymer nanocomposites: The nano effect on mechanical properties”, Polym. Rev. 2007, 47, 217–229.
  • Kumar, S. K.; Krishnamoorti, R. “Nanocomposites: Structure, phase behavior, and properties”, Annu. Rev. Chem. Biomol. Eng. 2010, 1, 37–58.
  • Adhikari, R.; Michler, G. H. “Polymer nanocomposites characterization by microscopy”, Polym. Rev. 2009, 49, 141–180.
  • Huang, Z.; Zhang, Y. Z.; Kotaki, M.; Ramakrishna, S. “A review on polymer nanofibers by electrospinning and their applications in nanocomposites”, Compos. Sci. Techn. 2003, 63, 2223–2253.
  • Moniruzzaman, M.; Winey, K. I. “Polymer nanocomposites containing carbon nanotubes”, Macromolecules 2006, 39, 5194–5205.
  • Winey, K. I.; Vaia, R. A. “Polymer nanocomposites”, MRS Bull. 2007, 32, 314.
  • Sternstein, S. S; Zhu, A.-J. “Current issues in research on structure property relationships in polymer nanocomposites”, Polymer 2010, 51, 3321–3343.
  • Potts, J. R.; Dreyer, D. R.; Bielawski, C. W.; Ruoff, R. S. “Graphene-based polymer nanocomposites”, Polymer 2011, 52, 5–25.
  • Kessler, M. R. “Polymer matrix composites: A perspective for a special issue of Polymer Reviews”, Polym. Rev. 2012, 52, 229–233.
  • Zeng, Q. H.; Yu, A. B.; and Lu, G. Q. “Multiscale modeling and simulation of polymer nanocomposites”, Prog. Polym. Sci. 2008, 33, 191–269.
  • Allegra, G.; Raos, G.; Vacatello, M. “Theories and simulations of polymer-based nanocomposites: From chain statistics to reinforcement”, Progr. Polym. Sci. 2008, 33, 683–731.
  • Voronina, E. N. “Multiscale simulation of polymer nanocomposites”, Phys. Atomic Nuclei 2011, 74, 1623–1643.
  • Li, Y.; Abberton, B. C.; Kröger, M.; Liu, W. K. “Challenges in multiscale modeling of polymer dynamics”, Polymers 2013, 5, 751–832.
  • Ganesan, V.; Jayaraman, A. “Theory and simulation studies of effective interactions, phase behavior and morphology in polymer nanocomposites”, Soft Matter 2014, 10, 13–38.
  • Zare, Y; Garmabi, H. “Attempts to simulate the modulus of polymer/carbon nanotube nanocomposites and future trends”, Polym. Rev. 2014, 54, 377–400.
  • Mackay, M. E.; Tuteja, A.; Duxbury, P. M.; Hawker, C. J.; Van Horn, B.; Guan, Z.; Chen, G. H.; Krishnan, R. S. “General strategies for nanoparticle dispersion”, Science 2006, 311, 1740–1743.
  • Mackay, M. E.; Dao, T. T.; Tuteja, A.; Ho, D. L.; Van Horn, B.; Kim, H. C.; Hawker, G. J. “Nanoscale effects leading to non-Einstein-like decrease in viscosity”, Nat. Mater. 2003, 2, 762–766.
  • Rong, M. Z.; Zhang, M. Q.; Liu, H.; Zeng, H.; Wetzel, B.; Friedrich, K. “Microstructure and tribological behavior of polymeric nanocomposites”, Indust. Lubric. Tribol. 2001, 53, 72–77.
  • Hore, M. J. A.; Frischknecht, A. L.; Composto, R. J. “Nanorod assemblies in polymer films and their dispersion-dependent optical properties”, ACS Macro Lett. 2012, 1, 115–121.
  • Jiang, G.; Hore, M. J. A.; Gam, S.; Composto, R. J. „Gold nanorods dispersed in homopolymer films: optical properties controlled by self-assembly and percolation of nanorods”, ACS Nano 2012, 2, 1578–1588.
  • Koerner, H.; Price, G.; Pearce, N. A.; Alexander, M.; Vaia, R. A. “Remotely actuated polymer nanocomposites-stress-recovery of carbon nanotube-filled thermoplastic elastomers”, Nat. Mater. 2004, 3, 115–120.
  • Tuteja, A.; Duxbury, P. M.; Mackay, M. E. “Polymer chain swelling induced by dispersed nanoparticles”, Phys. Rev. Lett. 2008, 100, 077801.
  • Sen, S.; Xie, Y.; Kumar, S. K.; Yang, H.; Bansal, A.; Ho, D. L.; Hall, L.; Hooper, J. B.; Schweizer, K. S. “Chain conformations and bound-layer correlations in polymer nanocomposites”, Phys. Rev. Lett. 2007, 98, 128302–128305.
  • Jouault, N.; Dalmas, F.; Said, S.; Di Cola, E.; Schweins, R.; Jestin, J.; Boue, F. “Direct measurement of polymer chain conformation in well-controlled model nanocomposites by combining SANS and SAXS”, Macromolecules 2010, 43, 9881–9891.
  • Crawford, M. K.; Smalley, R. J.; Cohen, G.; Hogan, B.; Wood, B.; Kumar, S. K.; Melnichenko, Y. B.; He, L.; Guise, W.; Hammouda, B. “Chain conformation in polymer nanocomposites with uniformly dispersed nanoparticles”, Phys. Rev. Lett. 2013, 110, 196001.
  • Nusser, K.; Neueder, S.; Schneider, G. J.; Meyer, M.; Pyckhout-Hintzen, W.; Willner, L.; Radulescu, A.; Richter, D. “Conformations of silica-poly(ethylene-propylene) nanocomposites”, Macromolecules 2010, 43, 9837–9847.
  • Nakatani, A. I.; Chen, W.; Schmidt, R. G.; Gordon, G. V.; Han, C. C. “Chain dimensions in polysilicate-filled poly(dimethyl siloxane)”, Polymer 2001, 42, 3713–3722.
  • Nakatani, A.; Chen, W.; Schmidt, R.; Gordon, G.; Han, C. “Chain dimensions in polysilicate-filled poly(dimethyl siloxane)”, Int. J. Thermophys. 2002, 23, 199–209.
  • Jouault, N.; Dalmas, F.; Boue, F.; Jestin, J. “Multiscale characterization of filler dispersion and origins of mechanical reinforcement in model nanocomposites”, Polymer 2012, 53, 761–775.
  • Gupta, S.; Zhang, Q. L.; Emrick, T.; Balazs, A. C.; Russell, T. P. “Entropy-driven segregation of nanoparticles to cracks in multilayered composite polymer structures”, Nat. Mater. 2006, 5, 229–233.
  • Gam, S; Meth, J. S.; Zane, S. G; Chi, G; Wood, B. A.; Seitz, M. E.; Winey, K. I.; Clarke, N.; Composto, R. J. “Macromolecular diffusion in a crowded polymer nanocomposite”, Macromolecules 2011, 44, 3494–3501.
  • Gam, S; Meth, J. S.; Zane, S.G; Chi, G; Wood, B.A.; Seitz, M. E.; Winey, K. I.; Clarke, N.; Composto, R. J. “Polymer diffusion in a polymer nanocomposite: effect of nanoparticle size and polydispersity”, Soft Matter 2012, 8, 6512–6520.
  • Lin, C. C.; Gam, S.; Meth, J. S.; Clarke, N.; Winey, K. I.; Composto, R. J. “Do attractive polymer-nanoparticle interactions retard polymer diffusion in nanocomposites?” Macromolecules 2013, 46, 4502–4509.
  • Tung, W. S.; Bird, V.; Composto, R. J.; Clarke, N.; Winey, K. I. “Polymer chain conformations in CNT/PS nanocomposites from small angle neutron scattering”, Macromolecules 2013, 46, 5345–5354.
  • Biswas, N.; Datta, A. “Polymer entanglement: A barrier to nanoparticles aggregation”, Chem. Phys. Lett. 2012, 531, 177–182.
  • Brechet, Y.; Cavaille, J. Y.; Chabert, E.; Chazeau, L.; Dendievel, R. “Polymer based nanocomposites: effect of filler-filler and filler-matrix interactions”, Adv. Eng. Mater. 2001, 3, 571–577.
  • Wong, M.; Paramsothy, M; X., X.J.; Ren, Y.; Li, S.; Liao, K. “Physical interactions at carbon nanotube-polymer interface”, Polymer 2003, 44, 7757–7764.
  • Bansal, A.; Yang, H.; Li, C.; Cho, K.; Benicewicz, B. C.; Kumar, S. K.; Schadler, L. S. “Quantitative equivalence between polymer nanocomposites and thin polymer films”, Nature Mater., 2005 4, 693–698.
  • Sen, S.; Xie, Y.; Bansal, A.; Yang, H.; Cho, K.; Schadler, L. S.; Kumar, S. K. “Equivalence between polymer nanocomposites and thin polymer films: Effect of processing conditions and molecular origins of observed behavior”, Eur. Phys. J. Special Topics 2007, 141, 161–165.
  • Rittigstein, P.; Priestley, R. D.; Broadbelt, L. J.; Torkelson, J. M. “Model polymer nanocomposites provide an understanding of confinement effects in real nanocomposites”, Nature Mater 2007, 6, 278–282.
  • Nusser, K.; Schneider, G. I.; Pyckhout-Hintzen, W.; Richter, D. “Viscosity decrease and reinforcement in polymer-silsequioxane composites”, Macromolecules 2011, 44, 7820–7830.
  • Scheidler, P.; Kob, W.; Binder, K. “Cooperative motion and growing length scales in supercooled confined liquids”, Europhys. Lett. 2002, 59, 701–707.
  • Mortezaei, M.; Famili, M. H. N.; Kokabi, “The role of interfacial interactions on the glass-transition and viscoelastic properties of silica/polystyrene nanocomposite”, Compos. Sci. Technol. 2011, 71, 1039–1045.
  • Ndoro, T. V. M.; Voyiatzis, E.; Ghanbari, A.; Theodorou, D. N.; Böhm, M. C.; Mu¨ller-Plathe, F. “Interface of grafted and ungrafted silica nanoparticles with a polystyrene matrix: Atomistic molecular dynamics simulations”, Macromolecules 2011, 44, 2316–2327.
  • Ndoro, T. V. M.; Böhm, M. C.; Mu¨ller-Plathe, F. “Interface and interphase dynamics of polystyrene chains near grafted and ungrafted silica nanoparticles”, Macromolecules 2012, 45, 171–179.
  • Voyiatzis, E.; Rahimi, M.; Mu¨ller-Plathe, F.; Böhm, M. C. “How thick is the polymer interphase in nanocomposites? Probing it by local stress anisotropy and gas solubility”, Macromolecules 2014, 47, 7878–7889.
  • Odegard, G. M.; Clancy, T. C.; Gates, T. S. “Modeling of the mechanical properties of nanoparticle/polymer composites”, Polymer 2005, 46, 553–562.
  • Brown, D.; Mele, P.; Marceau, S.; Alberola, N. D. “A molecular dynamics study of a model nanoparticle embedded in a polymer matrix”, Macromolecules 2003, 36, 1395–1406.
  • Brown, D.; Marcadon, V.; Mele, P.; Alberola, N. D. “Effect of filler particle size on the properties of model nanocomposites”, Macromolecules 2008, 41, 1499–1511.
  • Barbier, D.; Brown, D.; Grillet, A. C.; Neyertz, S. “Interface between end-functionalized PEO oligomers and a silica nanoparticle studied by molecular dynamics simulations”, Macromolecules 2004 37, 4695–4710.
  • Eslami, H.; Rahimi, M.; Mu¨ller-Plathe, F. “Molecular dynamics simulation of a silica nanoparticle in oligomeric poly(methyl methacrylate): A model system for studying the interface thickness in a polymer-nanocomposite via different properties”, Macromolecules 2013, 46, 8680–8692.
  • Porter, C. E; Blum, F. D. “Thermal characterization of PMMA thin films using modulated differential scanning calorimetry”, Macromolecules 2000, 33, 7016–7020.
  • der Lee, V.; Hamon, L.; Holl, Y.; Grohens, Y. “Density profiles in thin PMMA supported films investigated by X-ray reflectometry”, Langmuir 2001, 17, 7664–7669.
  • Pandey, Y. N; Doxastakis, M. “Detailed atomistic Monte Carlo simulations of a polymer melt on a solid surface and around a nanoparticle”, J. Chem. Phys. 2012, 136, 094901–094911.
  • Li, Y. “Effect of nanoinclusions on the structural and physical properties of polythelene polymer matrix”, Polymer 2011, 52, 2310–2318.
  • Ferdous, S. F.; Sarker, F.; Adnan, A. “Role of nanoparticle dispersion and filler-matrix interface on the matrix dominated failure of rigid C60-PE nanocomposites: A molecular dynamics simulation study”, Polymer 2013, 54, 2565–2576.
  • Yang, H.; Zhao, X. J.; Li, Z. S.; Yan, F. D. “Molecular dynamics simulations on crystallization of polyethylene/fullerene nanocomposites”, J. Chem. Phys. 2009, 130, 074902.
  • Yang, H.; Zhao, X. J.; Li, Z. S.; Yan, F. D. “Temperature influence on the crystallization of polyethyelene/fullerene nanocomposites: Molecular dynamics simulation”, J. Chem. Phys. 2009, 131, 234906.
  • Enyashin, A. N; Glazyrina, P. Y. “On the crystallization of polymer composites with inorganic fullerene-like particles”, Phys. Chem. Chem. Phys. 2012, 14, 7104–7111.
  • Yang, J.-S.; Yang, C.-L.; Wang, M.-S.; Chen, B.-D.; Ma, X.-G. “Crystallization of alkane melts induced by carbon nanotubes and graphene nanosheets: a molecular dynamics simulation study”, Phys. Chem. Chem. Phys. 2011, 13, 15476–15482.
  • Lin, P. H; Khare, R. “Molecular simulation of cross-linked epoxy and epoxy-POSS nanocomposite”, Macromolecules 2009, 42, 4319–4327.
  • Yani, Y; Lamm, M. H. “Molecular dynamics simulation of mixed matrix nanocomposites containing polyimide and polyhedral oligomeric silsesquioxane (POSS)”, Polymer 2009, 50, 1324–1332.
  • Wei, C.; Srivastava, D.; Cho, K. “Structural ordering in nanotube polymer composites”,Nano Lett. 2004, 4, 1949–1952.
  • Yang, M.; Koutsos, V.; Zaiser, M. „Interactions between polymers and carbon nanotubes: A molecular dynamics study”, J. Phys. Chem. B 2005, 109, 10009–10014.
  • Wei, C. “Radius and chirality dependent conformation of polymer molecules at nanotube interface”, Nano Lett. 2006, 6, 1627–1631.
  • Zheng, Q.; Xue, Q.; Yan, K.; Hao, L.; Li, Q.; Gao, X. “Investigation of molecular interactions between SWNT and polyethylene/polypropylene/polystyrene/polyaniline molecules”, J. Phys. Chem. C 2007, 111, 4628–4635.
  • Foroutan, M; Nasrabadi, A. T. “Investigation of the interfacial binding between single-walled carbon nanotubes and heterocyclic conjugated polymers”, J. Phys. Chem. B 2010, 114, 5320–5326.
  • Tallury, S. S; Pasquinelli, M. A. “Molecular dynamics simulations of flexible polymer chains wrapping single-walled carbon nanotubes”, J. Phys. Chem. B, 2010 114, 4122–4129.
  • Chakraborty, S; Roy, S. “Structural, dynamical, and thermodynamical properties of carbon nanotube polycarbonate composites: A molecular dynamics study”, J. Phys. Chem. B 2012, 116, 3083–3091.
  • Khare, K. S; Khare, R. “Effect of carbon nanotube dispersion on glass transition in cross-linked epoxy-carbon nanotube nanocomposites: Role of Interfacial interactions”, J. Phys. Chem. B 2013, 117, 7444–7454.
  • Eslami, H; Behrouz, M. “Molecular dynamics simulation of a polyamide-66/carbon nanotube nanocomposite”, J. Phys. Chem. C 2014, 118, 9841–9851.
  • Rouhi, S.; Alizadeh, Y.; Ansari, R. “On the interfacial characteristics of polyethylene/single-walled carbon nanotubes using molecular dynamics”, Appl. Surf. Sci. 2014, 292, 958–970.
  • Yang, H.; Chen, Y.; Liu, Y.; Cai, W. S. “Molecular dynamics simulation of polyethylene on single wall carbon nanotube”, J. Chem. Phys. 2007, 127, 094902.
  • Lordi, V; Yao, N. “Molecular mechanics of binding in carbon-nanotube-polymer composites”, J. Mater. Res. 2000, 15, 2770–2779.
  • Lu, B.; Maragakis, P.; Kaxiras, E. “Carbon Nanotube Interaction with DNA”, Nano Lett. 2005, 5, 897–900.
  • Johnson, R. R.; Johnson, A. T. C.; Klein, M. L. “Probing the structure of DNA-carbon nanotube hybrids with molecular dynamics”, Nano Lett. 2008, 8, 69–75.
  • Zheng, Q.; Xia, D.; Xue, Q.; Yan, K.; Gao, X.; Li, Q. “Computational analysis of effect of modification on the interfacial characteristics of a carbon nanotube-polyethylene composite system”, Appl. Surf. Sci. 255, 2009, 3534–3543.
  • Rouhi, S.; Alizadeh, Y.; Ansari, R. “On the wrapping of polyglycolide, poly(ethylene oxide), and polyketone polymer chains around single-walled carbon nanotubes using molecular dynamics simulations”, Braz. J. Phys. 2015, 45, 10–18.
  • Liu, J. A.; Xiao, T.; Liao, K.; Wu, P. “Interfacial design of carbon nanotube polymer composites: a hybrid system of noncovalent and covalent functionalizations”, Nanotechnology 2007, 18, 165701.
  • Dalton, A. B.; Stephan, C.; Coleman, J. N.; McCarthy, B.; Auayan, P. M.; Lefrant, S.; Bernier, P.; Blau, W. J.; Byrne, H. J. “Selective interaction of a semiconjugated organic polymer with single-wall nanotubes”, J. Phys. Chem. B 2000, 104, 10012–10016.
  • In het Panhuis, M.; Maiti, A.; Dalton, A. B.; van den Noort, A.; Coleman, J. N.; McCarthy, B.; Blau, W. J. “Selective interaction in a polymer-single-wall-carbon nanotube composite”, J. Phys. Chem. B 2003, 107, 478–482.
  • Maiti, A. “Multiscale modeling with carbon nanotubes”, Microelectronics J. 2008, 39, 208–221.
  • Khare, K. S.; Khabaz, F.; Khare, R. “Effect of carbon nanotube functionalization on mechanical and thermal properties of cross-linked epoxy-carbon nanotube nanocomposites”, Appl. Mater. Interf. 2014, 6, 6098–6110.
  • Zheng, Q.; Xue, Q.; Yan, K.; Gao, X.; Li, Q.; Hao, L. Z. “Influence of chirality on the interfacial bonding characteristics of carbon nanotube polymer composites”, J. Appl. Phys. 2008, 103, 044302.
  • Larin, S. V.; Falkovich, S. G.; Nazarychev, V. M.; Gurtovenko, A. A.; Lyulin, A. V.; Lyulin, S. V. “Molecular-dynamics simulation of polyimide matrix pre-crystallization near the surface of a single-walled carbon nanotube”, RSC Adv. 2014, 4, 830.
  • Yudin, V. E.; Svetlichnyj, A. N.; Shumakov, A. N.; Schechter, R.; Harel, H.; Marom, G. “Morphology and mechanical properties of carbon fiber reinforced composites based on semicrystalline polyimides modified by carbon nanofibers”, Composites A 2008, 39, 85–90.
  • Jiang, Q.; Tallury, S. S.; Qiu, Y.; Pasquinelli, M. A. “Molecular dynamics simulations of the effect of the volume fraction on unidirectional polyimide-carbon nanotube nanocomposites”, Carbon 2014, 67, 440–448.
  • Borodin, O.; Smith, G. D.; Bandyopadhyaya, R.; Byutner, O. “Molecular dynamics study of the influence of solid interfacs on poly(ethylene oxide) structure and dynamics”, Macromolecules 2003, 36, 7873–7883.
  • Smith, J. S.; Borodin, O.; Smith, G. D.; Kober, E. D. “A molecular dynamics simulation and quantum chemistry study of poly(dimethylsiloxane)-silica nanoparticle interactions”, J. Polym. Sci. B 2006, 45, 1599–1615.
  • Rissanou, A. N; Harmandaris, V. “Structure and dynamics of poly(methyl methacrylate)/graphene systems through atomistic molecular simulations”, J. Nanopart. Res. 2013, 15, 1589.
  • Rissanou, A. N; Harmandaris, V. “A molecular dynamics study of polymer/graphene nanocomposites”, Macromol. Symp. 2013, 331-332, 43–49.
  • Rissanou, A. N.; Power, A. J.; Harmandaris, V. “Structure and dynamics of polyethylene/graphene nanocomposites through molecular dynamics simulations”, Polymers 2015, 7, 390–417.
  • Guseva, D. V.; Komarov, P. V.; Lyulin, A. V. “Molecular dynamics simulations of thin polyisoprene films confined between amorphous silica substrates”, J. Chem. Phys. 2014, 140, 114903.
  • Falkovich, S. G.; Larin, S. V.; Lyulin, A. V.; Yudin, V. E.; Kenny, J. M.; Lyulin, S. V. “Influence of the carbon nanofiller surface curvature on the initiation of crystallization in thermoplastic polymers”, RSC Adv. 2014, 4, 48606.
  • Komarov, P. V.; Mikhailov, I. V.; Chiu, Y. T.; Chen, S. M.; Khalatur, P. G. “Molecular dynamics study of interface structure in composites comprising surface-modified SiO2 nanoparticles and a polyimide matrix”, Macromol. Theory Simul. 2013, 22, 187–197.
  • Lv, C; Xue, Q.; Xia, D. “Effect of chemisorption on the interfacial bonding characteristics of graphene-polymer composites”, J. Phys. Chem. C, 2010, 114, 6588–6594.
  • Ramanathan, T.; Abdala, A. A.; Stankovich, S.; Dikin, D. A.; Herrera-Alonso, M.; Piner, R. D.; Adamson, D. H.; Schniepp, H. C.; Chen, X.; Ruoff, R. S.; Nguyen, S. T.; Aksay, I. A.; Prud'Homme, R. K.; Brinson, L. C. “Functionalized graphene sheets for polymer nanocomposites”, Nature Nanotechnology 2008, 3, 327–331.
  • Harmandaris, V. A.; Mavrantzas, V. G.; Theodorou, D. N.; Kröger, M. Ramirez, J.; Öttinger, H. C.; Vlassopoulos, D. “Crossover from the Rouse to the entangled polymer melt regime: Signals from long, detailed atomistic molecular dynamics simulations, supported by rheological experiments”, Macromolecules 2003, 36, 1376–1387.
  • Stephanou, P. S.; Baig, S.; Tsolou, G.; Mavrantzas, V. G.; Kröger, M. “Quantifying chain reputation in entangled polymer melts: Topological and dynamical mapping of atomistic simulation results onto the tube model”, J. Chem. Phys. 2010, 132, 124904.
  • Rimola, A.; Aschi, M.; Orlando, R.; Ugliengo, P. „Does adsorption at hydroxyapatite surfaces induce peptide folding? Insights from large-scale B3LYP calculations”, J. Am. Chem. Soc. 2012, 134, 10899–10910.
  • Calzolari, A.; Cicero, G.; Cavazzoni, C.; Felice, R. D.; Catellani, A.; Corni, S. “Hydroxyl-rich beta-sheet adhesion to the gold surface in water by first-principle simulations”, J. Am. Chem. Soc. 2010, 132, 4790–4795.
  • Daff, T. D.; de Leeuw, N. H. “Ab initio molecular dynamics simulations of the cooperative adsorption of hydrazine and water on copper surfaces: Implications for shape control of nanoparticles”, Chem. Mater. 2011, 23, 2718–2728.
  • Delle Site, L.; Abrams, C. F.; Alavi, A.; Kremer, K. “Polymers near metal surfaces: Selective adsorption and global conformations”, Phys. Rev. Lett. 2002, 89, 156103.
  • Sushko, M. L.; Gal, A. Y.; Shluger, A. L. “Interaction of organic molecules with the TiO2 (110) surface: Ab inito calculations and classical force fields”, J. Phys. Chem. B 2006, 110, 4853–4862.
  • Hoefling, M.; Monti, S.; Corni, S.; Gottschalk, K. E. “Interaction of beta-sheet folds with a gold surface”, PLoS One 2011, 6, e20925.
  • Brancolini, G.; Kokh, D. B.; Calzolai, L.; Wade, R. C.; Corni, S. “Docking of ubiquitin to gold nanoparticles”, ACS Nano 2012, 6, 9863–9878.
  • Johnston, K.; Harmandaris, V. “Properties of short polystyrene chains confined between two gold surfaces through a combined density functional theory and classical molecular dynamics approach”, Soft Matter 2012, 8, 6320–6332.
  • Starr, F. W.; Schroder, T. B.; Glotzer, S. C. “Effects of a nanoscopic filler on the structure and dynamics of a simulated polymer melt and the relationship to ultrathin films”, Phys. Rev. E 2001, 64, 021802.
  • Starr, F. W.; Schroder, T. B.; Glotzer, S. C. “Molecular dynamics simulation of a polymer melt with a nanoscopic particle”, Macromolecules 2002, 35, 4481–4492.
  • Starr, F. W.; Douglas, J. F.; Glotzer, S. C. „Origin of particle clustering in a simulated polymer nanocomposite and its impact on rheology”, J. Chem. Phys. 2003, 119, 1777–1788.
  • Smith, J. S.; Bedrov, D.; Smith, G. D. “A molecular dynamics simulation study of nanoparticle interactions in a model polymer-nanoparticle composite”, Compos. Sci. Technol. 2003, 63, 1599–1605.
  • Bedrov, D.; Smith, G. D.; Smith, J. S. “Matrix-induced nanoparticle interactions in a polymer melt: A molecular dynamics simulation study”, J. Chem. Phys. 2003, 119, 10438–10447.
  • Patra, T. K; Singh, J. K. “Coarse-grain molecular dynamics simulations of nanoparticle-polymer melt: Dispersion vs agglomeration”, J. Chem. Phys. 2013, 138, 144901.
  • Patra, T. K; Singh, J. K. “Polymer directed aggregation and dispersion of anisotropic nanoparticles”, Soft Matter 2014, 10, 1823–1830.
  • Ghanbari, A.; Ndoro, T. V. M.; Leroy, F.; Rahimi, M.; Böhm, M. C.; Mu¨ller-Plathe, F. “Interface structure in silica-polystyrene nanocomposites: A coarse-grained molecular dynamics study”, Macromolecules 2012, 45, 572–584.
  • Milano, G.; Santangelo, G.; Ragone, F.; Cavallo, L.; Di Matteo, A. “Gold nanoparticle/polymer interfaces: All atom structures from molecular dynamics simulations”, J. Phys. Chem. C 2011, 115, 15154–15163.
  • Tyagi, S.; Lee, J. Y.; Buxton, G. A.; Balazs, A. C. “Using nanocomposite coatings to heal surface defects”, Macromolecules 2004, 37, 9160–9168.
  • Desai, T.; Keblinski, P.; Kumar, S. K. “Molecular dynamics simulations of polymer transport in nanocomposites”, J. Chem. Phys. 2005, 122, 134910.
  • Papakonstantopoulos, G. J.; Yoshimoto, K.; Doxastakis, M.; Nealey, P. F.; de Pablo, J. J. “Local mechanical properties of polymeric nanocomposites”, Phys. Rev. E 2005, 72, 031801.
  • Papakonstantopoulos, G. J.; Doxastakis, M.; Nealey, P. F.; Barrat, J.-L.; de Pablo, J. J. “Calculation of local mechanical properties of filled polymers”, Phys. Rev. E 2007, 75, 031803.
  • Liu, J.; Wu, Y.; Shen, J.; Gao, Y.; Zhang, L.; Cao, D. “Polymer-nanoparticle interfacial behavior revisited: A molecular dynamics study”, Phys. Chem. Chem. Phys. 2011, 13, 13058–13069.
  • Padmanabhan, V. “Percolation of high-density polymer regions in nanocomposites: The underlying property for mechanical reinforcement”, J. Chem. Phys. 2013, 139, 144904.
  • Patti, A. “Molecular dynamics of spherical nanoparticles in dense polymer melts”, J. Phys. Chem. B 2014, 86, 011403.
  • Li, Y.; K¨roger, M.; Liu, W. K. “Dynamic structure of unentangled polymer chains in the vicinity of non-attractive nanoparticles”, Soft Matter 2014, 10, 1723–1737.
  • Gao, Y.; Liu, J.; Shen, J.; Zhang, L.; Cao, D. “Molecular dynamics simulation of dispersion and aggregation kinetics of nanorods in polymer nanocomposites”, Polymer 2014, 55, 1273–1281.
  • Chen, L.; Zheng, K.; Tian, X.; Hu, K.; Wang, R.; Liu, C.; Y., L.; Cui, P. “Double glass transitions and interfacial immobilized layer in in-situ-synthesized poly(vinyl alcohol)/silica nanocomposites”, Macromolecules 2010, 43, 1076–1082.
  • Meng, D.; Kumar, S. K.; Cheng, S.; Grest, G. S. “Simulating the miscibility of nanoparticles and polymer melts”, Soft Matter 2013, 9, 5417–5427.
  • Karatrantos, A.; Composto, R. J.; Winey, K. I.; Kröger, M.; Clarke, N. “Entanglements and dynamics of polymer melts near a SWCNT”, Macromolecules 2012, 45, 7274–7281.
  • Goswami, M; Sumpter, B. G. “Anomalous chain diffusion in polymer nanocomposites for varying polymer-filler interaction strengths”, Phys. Rev. E 2010, 81, 041801.
  • Li, R. N.; Chen, F.; Chi-Hang Lam, C. H.; Tsui, O. K. C. “Viscosity of PMMA on silica: Epitome of systems with strong polymer-substrate interactions”, Macromolecules 2013, 46, 7889–7893.
  • Glomann, T.; Schneider, G. J.; Allgaier, J; Radulescu, A.; Lohstroh, W.; Farago, B.; Richter, D. “Microscopic dynamics of polyethylene glycol chains interacting with silica nanoparticles”, Phys. Rev. Lett. 2013, 110, 178001.
  • Oh, H.; Green, P. F. “Polymer chain dynamics and glass transition in athermal polymer/nanoparticle mixtures”, Nat. Mater. 2009, 8, 139–143.
  • Smith, G. D.; Bedrov, D.; Li, L.; Byutner, O. “A molecular dynamics simulation study of the viscoelastic properties of polymer nanocomposites”, J. Chem. Phys. 2002, 117, 9478–9489.
  • Riggleman, R. A.; Toepperwein, G.; Papakonstantopoulos, G. J.; Barrat, J.-L.; de Pablo, J. J. “Entanglement network in nanoparticle reinforced polymers”, J. Chem. Phys. 2009,130, 244903–244906.
  • Li, Y.; Kröger, M.; Liu, W. K. “Nanoparticle geometrical effect on structure, dynamics and anisotropic viscosity of polyethylene nanocomposites”, Macromolecules 2012, 45, 2099–2112.
  • Karatrantos, A.; Composto, R. J.; Winey, K. I.; Clarke, N. “Structure and conformations of polymer / SWCNT nanocomposites”, Macromolecules 2011, 44, 9830–9838.
  • Toepperwein, G. N.; Karayiannis, N. C.; Riggleman, R. A.; Kröger, M.; de Pablo, J. J. “Influence of nanorod inclusions on structure and primitive path network of polymer nanocomposites at equilibrium and under deformation”, Macromolecules 2011, 44, 1034–1045.
  • Karatrantos, A.; Clarke, N.; Composto, R. J.; Winey, K. I. “Topological entanglement length in polymer melts and nanocomposites by a DPD polymer model”, Soft Matter 2013, 9, 3877–3884.
  • Gao, Y.; Liu, J.; Shen, J.; Zhang, L.; Cao, D. “Influence of various nanoparticle shapes on the interfacial chain mobility:a molecular dynamics simulation”, Phys. Chem. Chem. Phys. 2014, 16, 21372.
  • Li, Y.; Kröger, M.; Liu, W. K. “Nanoparticle effect on the dynamics of polymer chains and their entanglement network”, Phys. Rev. Lett. 2012, 109, 118001.
  • Kutvonen, A.; Rossi, G.; Ala-Nissila, T. “Correlations between mechanical, structural, and dynamical properties of polymer nanocomposites”, Phys. Rev. E 2012, 85, 041803.
  • Sukumaran, S. K.; Grest, G. S.; Kremer, K.; Everaers, R. “Identifying the primitive path mesh in entangled polymer liquids”, J. Polym. Sci. B 2005, 43, 917–933.
  • Kröger, M. “Shortest multiple disconnected path for the analysis of entanglements in two-and three-dimensional polymeric systems”, Comput. Phys. Commun. 2005, 168, 209–232.
  • Shanbhag, S.; Kröger, M. “Primitive path networks generated by annealing and geometrical methods: Insights into differences”, Macromolecules 2007, 40, 2897–2903.
  • Karayiannis, N. C.; Kröger, M. “Combined molecular algorithms for the generation, equilibration and topological analysis of entangled polymers: Methodology and performance”, Int. J. Mol. Sci. 2009, 10, 5054–5089.
  • Hoy, R. S.; Foteinopoulou, K.; Kröger, M. “Topological analysis of polymeric melts: Chain-length effects and fast-converging estimators for entanglement length”, Phys. Rev. E 2009, 80, 031803.
  • Everaers, R. “Topological versus rheological entanglement length in primitive-path analysis protocols, tube models, and slip-link models”, Phys. Rev. E 2012, 86, 022801.
  • Karatrantos, A.; Clarke, N.; Composto, R. J.; Winey, K. I. “Polymer conformations in polymer nanocomposites containing spherical nanoparticles”, Soft Matter 2015, 11, 382–388.
  • Karatrantos, A.; Clarke, N.; Composto, R. J.; Winey, K. I. “Structure, entanglements and dynamics of polymer nanocomposites containing spherical nanoparticles”, MRS Proc. 2014, 1619, 012041.
  • Karatrantos, A.; Clarke, N.; Composto, R. J.; Winey, K. I. “Structure, entanglements and dynamics of polymer nanocomposites containing spherical nanoparticles”, IOP Conf. Series: Mater. Sci. Eng. 2014, 64, 012041.
  • Smith, G. D; Bedrov, D. “Dispersing nanoparticles in a polymer matrix: Are long, dense polymer tethers really necessary?” Langmuir 2009, 25, 11239–11243.
  • Kalb, J.; Dukes, D.; Kumar, S. K.; Hoy, R. S.; Grest, G. S. “End grafted polymer nanoparticles in a polymeric matrix: Effect of coverage and curvature”, Soft Matter 2011, 7, 1418–1425.
  • Klos, S; Pakula, T. “Computer simulations of chains end-grafted onto a spherical surface. Effect of matrix polymer”, Macromolecules 2004, 37, 8145–8151.
  • Goyal, S; Escobedo, F. A. “Structure and transport properties of polymer grafted nanoparticles”, J. Chem. Phys. 2011, 135, 184902.
  • Chao, H; Riggleman, R. A. “Effect of particle size and grafting density on the mechanical properties of polymer nanocomposites”, Polymer 2013, 54, 5222–5229.
  • Xue, Y. H.; Quan, W.; Qu, F. H.; Liu, H. “Conformation of polydispersed chains grafted on nanoparticles”, Mol. Simul. 2015, 41, 298–310.
  • Shen, J.; Liu, J.; Gao, Y.; Cao, D.; Zhang, L. “Molecular dynamics simulations of the structural, mechanical and visco-elastic properties of polymer nanocomposites filled with grafted nanoparticles”, Phys. Chem. Chem. Phys. 2015, 17, 7196–7207.
  • Shen, J.; Liu, J.; Gao, Y.; Cao, D.; Zhang, L. “Revisiting the dispersion mechanism of grafted nanoparticles in polymer matrix: A detailed molecular dynamics simulation”, Langmuir 2011, 27, 15213–15222.
  • Ghanbari, A.; Rahimi, M.; Dehghany, J. “Influence of surface grafted polymers on the polymer dynamics in a silica polystyrene nanocomposite: A coarse-grained molecular dynamics investigation”, J. Phys. Chem. C 2013, 117, 25069–25076.
  • Chen, T.; Qian, H. J.; Zhu, Y. L.; Lu, Z. Y. “Structure and dynamics properties at interphase region in the composite of polystyrene and cross-linked polystyrene soft nanoparticle”, Macromolecules 2015, 48, 2751–2760.
  • Lin, B.; Martin, T. B.; Jayaraman, A. “Decreasing polymer flexibility improves wetting and dispersion of polymer-grafted particles in a chemically identical polymer matrix”, ACS Macro Lett. 2014, 3, 628–632.
  • Palli, B; Padmanabhan, V. “Chain flexibility for tuning effective interactions in blends of polymers and polymer-grafted nanoparticles”, Macromol. Theory Simul. 2014, 10, 6777.
  • Borodin, O.; Bedrov, D.; Smith, G. D.; Nairn, J.; Bardenhagen, S. “Multiscale modeling of viscoelastic properties of polymer nanocomposites”, J. Polym. Sci. B 2005, 43, 1005–1013.
  • Karatrantos, A.; Composto, R. J.; Winey, K. I.; Clarke, N. “Primitive path network, structure and dynamics of SWCNT/polymer nanocomposites”, IOP Conf. Series: Mater. Sci. Eng. 2012, 40, 012027.
  • Toepperwein, G. N.; Riggleman, R. A.; de Pablo, J. J. “Dynamics and deformation response of rod-containing nanocomposites”, Macromolecules 2011, 45, 543–554.
  • Gao, Y.; Liu, J.; Shen, J.; Zhang, L.; Guo, Z.; Cao, D. “Uniaxial deformation of nanorod filled polymer nanocomposites: A coarse-grained molecular dynamics simulation”, Phys. Chem. Chem. Phys. 2014, 16, 16039–16048.
  • Gao, Y.; Liu, J.; Shen, J.; Zhang, L.; Cao, D. “Molecular dynamics simulation of dispersion and aggregation kinetics of nanorods in polymer nanocomposites”, Polymer 2014, 55, 1273–1281.
  • Gao, Y.; Liu, J.; Shen, J.; Cao, D.; Zhang, L. “Molecular dynamics simulation of the rupture mechanism in nanorod filled polymer nanocomposites”, Phys. Chem. Chem. Phys. 2014, 16, 18483–18492.
  • Kloczkowski, A.; Sharaf, M. A.; Mark, J. E. “Computer-simulations on filled elastomeric materials”, Chem. Eng. Sci. 1994, 49, 2889–2897.
  • Yuan, Q. W.; Kloczkowski, A.; Mark, J. E.; Sharaf, M. A. “Simulations on the reinforcement of poly(dimethylsiloxane) elastomers by randomly distributed filler particles”, J. Polym. Sci. Polym. Phys. Ed. 1996, 34, 1647–1657.
  • Doxastakis, M.; Chen, Y.-L.; Guzman, O.; de Pablo, J. J. “Polymer-particle mixtures: Depletion and packing effects”, J. Chem. Phys. 2004, 120, 9335–9342.
  • Vacatello, M. “Monte Carlo simulations of polymer melts filled with solid nanoparticles”, Macromolecules 2001, 34, 1946–1952.
  • Vacatello, M. “Chain dimensions in filled polymers: An intriguing problem”, Macromolecules 2002, 35, 8191–8193.
  • Vacatello, M. “Predicting the molecular arrangements in polymer-based nanocomposites”, Macromol. Theory Simul. 2003, 12, 86–91.
  • Vacatello, M. “Phantom chain simulations of polymer-nanofiller systems”, Macromolecules 2003, 36, 3411–3416.
  • Dionne, P. J.; Osizik, R.; Picu, C. R. “Structure and dynamics of polyethylene nanocomposites”, Macromolecules 2005, 38, 9351–9358.
  • Ozmusul, M. S.; Picu, C. R.; Sternstein, S. S.; Kumar, S. K. “Lattice Monte Carlo simulations of chain conformations in polymer nanocomposites”, Macromolecules 2005, 38, 4495–4500.
  • Zhang, Q; Archer, L. A. “Monte Carlo simulation of structure and nanoscale interactions in polymer nanocomposites”, J. Chem. Phys. 2004, 121, 10814–10824.
  • Ozmusul, M. S; Picu, R. C. “Structure of polymers in the vicinity of convex impenetrable surfaces: the athermal case”, Polymer 2002, 43, 4657–4665.
  • Picu, R. C; Ozmusul, M. S. “Structure of linear polymeric chains confined between impenetrable spherical walls”, J. Chem. Phys. 2003, 118, 11239–11248.
  • Erguney, F. M.; Lin, H.; Mattice, W. L. “Dimensions of matrix chains in polymers filled with energetically neutral nanoparticles”, Polymer 2006, 47, 3689–3695.
  • Erguney, F. M; Mattice, W. L. “Response of matrix chains to nanoscale filler particles”, Polymer 2008, 49, 2621–2623.
  • Vogiatzis, G. G.; Vogiatzis, E.; Theodorou, D. N. “Monte Carlo simulations of a coarse grained model for an athermanl all-polystyrene nanocomposite system”, Europ. Polym. J 2011, 47, 699–712.
  • Termonia, Y. “Monte-Carlo modeling of dense polymer melts near nanoparticles”, Polymer 2009, 50, 1062–1066.
  • Termonia, Y. “Chain confinement in polymer nanocomposites and its effect on polymer bulk properties”, J. Polym. Sci. B 2010, 48, 687–692.
  • Huang, J.; Mao, Z.; Qian, C. “Dynamic Monte Carlo study on the polymer chain in random media filled with nanoparticles”, Polymer 2006, 47, 2928–2932.
  • Li, C. Y.; Qian, C. J.; Yang, Q. H.; Luo, M. B. “Study on the polymer diffusion in a media with periodically distributed nanosized fillers”, J. Chem. Phys. 2014, 140, 104902.
  • Takhulee, A.; Ozisik, R.; Vao-Soongnern, V. “Monte Carlo simulation of the structure of mono- and bidisperse polyethylene nanocomposites”, Chinese J. Polym. Sci. 2015, 33, 275–283.
  • Vogiatzis, G. G; Theodorou, D. N. “Structure of polymer layers grafted to nanoparticles in silica-polystyrene nanocomposites”, Macromolecules 2013, 46, 4670–4683.
  • Milner, S. T. “Polymer brushes”, Science 1991, 251, 905–914.
  • Dodd, P. M; Jayaraman, A. “Monte carlo simulations of polydisperse polymers grafted on spherical surfaces”, J. Polym. Sci. B 2012, 50, 694–705.
  • Hoogerbrugge, P.J; Koelman, J. M. V. A. “Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics”, Europhys. Lett. 1992, 19, 155–160.
  • Groot, R.D; Warren, P. B. “Dissipative particle dynamics: Bridging the gap between atomistic and mesoscopic simulation”, J. Chem. Phys. 1997, 107, 4423–4435.
  • Allen, M.P; Tildesley, D. J. Computer Simulation of Liquids; Clarendon Press: Oxford, 1987.
  • Frenkel, D; Smit, B. Understanding Molecular Simulation: From Algorithms to Applications; Academic Press: San Diego, 1996.
  • Xu, H.; Zhang, Q.; Zhang, H.; Zhang, B.; Yin, C. “The simulation of polystyrene/nanoparticles composite microspheres using dissipative particle dynamics”, J. Theor. Comput. Chem. 2013, 12, 1250111.
  • Maiti, A.; Wescott, J.; Kung, P. “Nanotube-polymer composites: insights from Flory-Huggins theory and mesoscale simulations”, Mol. Simul. 2005, 31, 143–149.
  • Ionita, M.; Branzoi, I. V.; Pilan, L. “Multiscale molecular modeling and experimental validation of polyaniline-CNTs composite coatings for corrosion protecting”, Surf. Interf. Anal. 2010, 42, 987–990.
  • Wang, Y. C.; Ju, S. P.; Cheng, J. Z.; Lu, J. M.; Wang, H. H. “Modeling of polyethylene and functionalized CNT composites: a dissipative particle dynamics study”, J. Phys. Chem. C 2010, 114, 3376–3384.
  • Wang, Y. C.; Ju, S. P.; Huang, T. J.; Wang, H. H. “Modeling of polyethylene, poly(L-lactide), and CNT composites: a dissipative particle dynamics study”, Nanoscale Res. Lett. 2011, 6, 433.
  • Ju, S. P.; Wang, Y. C.; Huang, G. J.; Chang, J. J. “Miscibility of graphene and poly(methyl methacrylate) (PMMA): molecular dynamics and dissipative particle dynamics simulations”, RSC Adv. 2013, 3, 8298–8307.
  • Scocchi, G.; Posocco, P.; Danani, A.; Pricl, S.; Fermeglia, M. “To the nanoscale, and beyond! Multiscale molecular modeling of polymer-clay nanocomposites”, Fluid Phase Equilibria 2007, 261, 366–374.
  • Rahatekar, S. S.; Hamm, M.; Shaffer, S. P.; Elliott, J. A. “Mescoscale modeling of electrical percolation in fiber-filled systems”, J. Chem. Phys. 2005, 123, 134702.
  • Hore, M. J. A; Laradji, M. “Microphase separation induced by interfacial segregation of isotropic, spherical nanoparticles”, J. Chem. Phys. 2007, 126, 244903.
  • Hu, S. W.; Sheng, Y. J.; Tsao, H. K. “Self-assembly of organophilic nanoparticles in a polymer matrix: Depletion interactions”, J. Phys. Chem. C. 2012, 116, 1789–1797.
  • Wescott, J. T.; Kung, P.; Maiti, A. “Conductivity of carbon nanotube polymer composites”, Appl. Phys. Lett. 2007, 90, 033116.
  • Hore, M. J. A; Laradji, M. “Prospects of nanorods as an emulsifying agent of immiscible blends”, J. Chem. Phys. 2008, 128, 054901.
  • Yan, L. T.; Maresov, E.; Buxton, G. A.; Balazs, A. C. „Self-assembly of mixtures of nanorods in binary, phase-separating blends”, Soft Matter 2011, 7, 595–607.
  • Yang, Z.; Xin-Ping, L.; Qing-Xuan, Z. “Dissipative particle dynamics studies on the interface of incompatible A/B homopolymer blends in the presence of nanorods”, Polymer 2011, 52, 6110–6116.
  • Raos, G.; Moreno, M.; Elli, S. “Computational Experiments on Filled Rubber Viscoelasticity: What is the role of particle-particle interactions?” Macromolecules 2006, 36, 6744–6751.
  • Raos, G; Casalegno, M. “Nonequilibrium simulations of filled polymer networks: searching for the origins of reinforcement and nonlinearity”, J. Chem. Phys. 2011, 134, 054902.
  • Ellero, M.; Kröger, M.; Hess, S. “Multiscale dynamics modeling of viscoelastic materials containing rigid nonrotating inclusions”, Multiscale Model. Simul. 2006, 5, 759–785.
  • Tasis, D.; Tagmatarchis, N.; Georgakilas, V.; Prato, M. “Soluble carbon nanotubes”, Chem. Europ. J. 2003, 9, 4001–4008.
  • Grujicic, M.; Cao, G.; Roy, W. N. “Atomistic simulations of the solubilization of single-walled carbon nanotubes in toluene”, J. Mater. Sci. 2004, 39, 2315–2325.
  • Grujicic, M.; Cao, G.; Roy, W. N. “Atomistic modeling of solubilization of carbon nanotubes by non-covalent functionalization with poly(p-phenylenevinylene-co-2,5-dioctoxy-m-phenylenevinylene)”, Appl. Surf. Sci. 2004, 227, 349–365.
  • Chakraborty, S.; Choudhury, C. K.; Roy, S. “Morphology and dynamics of carbon nanotube in polycarbonate carbon nanotube composite from dissipative particle dynamics simulation”, Macromolecules 2012, 46, 3631–3638.
  • Chakrabarti, R.; Kesselheim, S.; Kosovan, P.; Holm, C. “Tracer diffusion in a crowded cylindrical channel”, Phys. Rev. E 2013, 87, 062709.
  • Spenley, N. A. “Scaling laws for polymers in dissipative particle dynamics”, Europhys. Lett. 2000, 49, 534–540.
  • Liba, O.; Kauzlaric, D.; Abrams, Z. R.; Hanein, Y.; Greiner, A.; Korvink, J. G. “A dissipative particle dynamics model of carbon nanotubes”, Mol. Simul. 2008, 34, 737–748.
  • Nikunen, P.; Karttunen, M.; Vattulainen, I. “Reptational dynamics in dissipative particle dynamics simulations of polymer melts”, Phys. Rev. E 2007, 75, 036713.
  • Kremer, K; Grest, G. S. “Dynamics of entangled linear polymer melts: A molecular-dynamics simulation”, J. Chem. Phys. 1990, 92, 5057–5086.
  • Maurel, G.; Goujon, F.; Schnell, B.; Malfreyt, P. “Multiscale modeling of the polymer-silica surface interaction:from atomistic to mesoscopic simulations”, J. Phys. Chem. C 2015, 119, 4817–4826.
  • Kacar, G.; Peters, A. J. F. E.; de With, G. “Structure of a thermoset polymer near an alumina substrate as studied by dissipative particle dynamics”, J. Phys. Chem. C 2013, 117, 19038–19047.
  • Lyubartsev, A. P.; Laaksonen, A. “Calculation of effective interaction potentials from radial-distribution functions. A reverse Monte-Carlo approach”, Phys. Rev. E 1995, 52, 3730–3737.
  • Kröger, M. Models for Polymeric and Anisotropic Liquids; Springer: Berlin, 2005.
  • Izvekov, S.; Voth, G. A. “A multiscale coarse-graining method for biomolecular systems”, J. Phys. Chem. B 2005, 109, 2469–2473.
  • Izvekov, S.; Violi, A.; Voth, G. A. “Systematic coarse-graining of nanoparticle interactions in molecular dynamics simulation”, J. Phys. Chem. B 2005, 109, 17019–17024.
  • Shell, M. S. “The relative entropy is fundamental to multiscale and inverse thermodynamics problems”, J. Chem. Phys. 2008, 129, 144108.
  • Yang, D.; Wang, Q. “Systematic and simulation-free coarse graining of homopolymer melts: a relative-entropy-based study”, Soft Matter 2015, DOI: 10.1039/c5sm01142f
  • Noid, W.G. “Perspective: Coarse-grained models for biomolecular systems”, J. Chem. Phys. 2013, 139, 090901.
  • Potestio, R.; Peter, C.; Kremer, K. “Computer simulations of soft matter: Linking the scales”, Entropy 2014, 16, 4199–4245.
  • Maurel, G.; Schnell, B.; Goujon, F.; Couty, M.; Malfreyt, P. “Multiscale modeling approach toward the prediction of viscoelastic properties of polymers”, J. Chem. Theory Comput. 2012, 8, 4570–4579.
  • Minfang, M.; Clarke, N.; Composto, R. J.; Winey, K. I. “Polymer diffusion exhibits a minimum with increasing single-walled carbon nanotube concentration”, Macromolecules 2009, 42, 7091–7097.
  • Karatrantos, A.; Clarke, N. “A theoretical model for the prediction of diffusion in polymer/SWCNT nanocomposites”, Soft Matter 2011, 7, 7334–7341.
  • Soddemann, T.; Dünweg, B.; Kremer, K. “Dissipative particle dynamics: A useful thermostat for equilibrium and nonequilibrium molecular dynamics simulations”, Phys. Rev. E 2003, 68, 046702.
  • Khani, S.; Yamanoi, M.; Maia, J. “The Lowe-Andersen thermostat as an alternative to the dissipative particle dynamics in the mesoscopic simulation of entangled polymers”, J. Chem. Phys. 2013, 138, 174903.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.