667
Views
19
CrossRef citations to date
0
Altmetric
Reviews

Bimetallic Dendrimer-encapsulated Nanoparticle Catalysts

&

References

  • Andres, R.; De Jesus, E.; Flores, J. C. “Catalysts based on palladium dendrimers”, New J. Chem. 2007, 31, 1161–1191.
  • Bronstein, L. M.; Shifrina, Z. B. “Dendrimers as encapsulating, stabilizing, or directing agents for inorganic nanoparticles”, Chem. Rev. 2011, 111, 5301–5344.
  • Astruc, D.; Chardac, F. “Dendritic catalysts and dendrimers in catalysis”, Chem. Rev. 2001, 101, 2991–3023.
  • Newkome, G. R.; He, E. F.; Moorefield, C. N. “Suprasupermolecules with novel properties: metallodendrimers”, Chem. Rev. 1999, 99, 1689–1746.
  • Liu, D. X.; Lopez-De Jesus, Y. M.; Monnier, J. R.; Williams, C. T. “Preparation, characterization, and kinetic evaluation of dendrimer-derived bimetallic Pt-Ru/SiO 2 catalysts”, J. Catal. 2010, 269, 376–387.
  • Kojima, C.; Kono, K.; Maruyama, K.; Takagishi, T. “Synthesis of polyamidoamine dendrimers having poly (ethylene glycol) grafts and their ability to encapsulate anticancer drugs”, Bioconjugate Chem. 2000, 11, 910–917.
  • El-Sayed, M. A. “Some interesting properties of metals confined in time and nanometer space of different shapes”, Acc. Chem. Res. 2001, 34, 257–264.
  • Adronov, A.; Frechet, J. M. “Light-harvesting dendrimers”, J. Chem. Commun. 2000, 18, 1701–1710.
  • Matthews, O. A.; Shipway, A. N.; Stoddart, J. F. “Dendrimers-branching out from curiosities into new technologies”, Prog. Polym. Sci. 1998, 23, 1–56.
  • Peng, X.; Pan, Q.; Rempel, G. L. “Bimetallic dendrimer-encapsulated nanoparticles as catalysts: a review of the research advances”, Chem. Soc. Rev. 2008, 37, 1619–1628.
  • Alper, J. “Rising chemical stars could play many roles”, Science 1991, 251, 1562–1564.
  • Twyman, L. J.; King, A. S. H.; Martin, I. K. “Catalysis inside dendrimers”, Chem. Soc. Rev. 2002, 31, 69–82.
  • Chandler, B. D.; Gilbertson, J. D. “Dendrimer-encapsulated bimetallic nanoparticles: Synthesis, characterization, and applications to homogeneous and heterogeneous catalysis”, In Dendrimer Catalysis; Gade, L. H., Ed.; Springer-Verlag: Berlin, 2006; pp. 97–120.
  • Crooks, R. M.; Lemon, B. I.; Sun, L.; Yeung, L. K.; Zhao, M. Top. “Dendrimer-encapsulated metals and semiconductors: synthesis, characterization, and applications”, Curr. Chem. 2001, 212, 82–135.
  • Klajnert, B.; Bryszewska, M. “Dendrimers: properties and applications”, Acta. Biochimica. Polonica. 2000, 48, 199–208.
  • Caminati, G.; Turro, N. J.; Tomalia, D. A. “Photophysical investigation of starburst dendrimers and their interactions with anionic and cationic surfactants”, J. Am. Chem. Soc. 1990, 112, 8515–8522.
  • Fischer, M.; Vögtle, F. “Dendrimers: from design to application-a progress report”, Angew. Chem. Int. Ed. Engl. 1999, 38, 884–905.
  • Wang, C.; Zhu, G.; Li, J.; Cai, X.; Wei, Y.; Zhang, D.; Qiu, S. “Rigid nanoscopic containers for highly dispersed, stable metal and bimetal nanoparticles with both size and site control”, Chem. Eur. J. 2005, 11, 4975–4982.
  • Endo, T.; Kuno, T.; Yoshimura, T.; Esumi, K. J. “Preparation and catalytic activity of Au-Pd, Au-Pt, and Pt-Pd binary metal dendrimer nanocomposites”, Nanosci. Nanotechnol. 2005, 5, 1875–1882.
  • Niu, Y.; Sun, L.; Crooks, R. M. “Determination of the intrinsic proton binding constants for poly (amidoamine) dendrimers via potentiometric pH titration”, Macromolecules 2003, 36, 5725–5731.
  • Li, G.; Luo, Y. “Preparation and characterization of dendrimer-templated Ag-Cu bimetallic nanoclusters”, Inorg. Chem. 2008, 47, 360–364.
  • Scott, R. W. J.; Datye, A. K.; Crooks, R. M. “Bimetallic palladium-platinum dendrimer-encapsulated catalysts”, J. Am. Chem. Soc. 2003, 125, 3708–3709.
  • Scott, R. W. J.; Wilson, O. M.; Oh, S. K.; Kenik, E. A; Crooks, R. M. “Bimetallic palladium-gold dendrimer-encapsulated catalysts”, J. Am. Chem. Soc. 2004, 126, 15583–15591.
  • Scott, R. W. J.; Sivadinarayana, C.; Wilson, O. M.; Yan, Z.; Goodman, D. W.; Crooks, R. M. “Titania-supported PdAu bimetallic catalysts prepared from dendrimer-encapsulated nanoparticle precursors”, J. Am. Chem. Soc. 2005, 127, 1380–1381.
  • Crooks, R. M.; Zhao, M.; Sun, L.; Chechik, V.; Yeung, L. K. “Dendrimer-encapsulated metal nanoparticles: synthesis, characterization, and applications to catalysis”, Acc. Chem. Res. 2001, 34, 181–190.
  • Tomalia, D. A.; Baker, H.; Dewald, J.; Hall, M.; Kallos, G.; Martin, S.; Roeck, J.; Ryder, J.; Smith, P. “A new class of polymers: starburst-dendritic macromolecules”, Polym. J. 1985, 17, 117–132.
  • Hawker, C. J.; Frechet, J. M. J. “One-step synthesis of hyperbranched dendritic polyesters”, J. Am. Chem. Soc 1991, 113, 4583–4588.
  • Grayson, S. M.; Frechet, J. M. “Convergent dendrons and dendrimers: from synthesis to applications”, J. Chem. Rev. 2001, 101, 3819–3867.
  • Vögtle, F.; Richardt, G.; Werner, N. “Synthetic Methods for Dendritic Molecules”, In Dendrimer Chemistry: Concepts, Syntheses, Properties, Applications; Vögtle, F.; Richardt, G.; Werner, N., Eds.; Wiley: Weinheim, 2009; pp 25–48.
  • Sowinska, M.; Urbanczyk-Lipkowska, Z. “Advances in the chemistry of dendrimers”, New J. Chem. 2014, 38, 2168–2203.
  • Vögtle, F.; Richardt, G.; Werner, N. “Introduction”, In Dendrimer Chemistry: Concepts, Syntheses, Properties, Applications; Vögtle, F.; Richardt, G.; Werner, N., Eds.; Wiley: Weinheim, 2009, p. 3.
  • Vögtle, F.; Richardt, G.; Werner, N. “Synthetic Methods for Dendritic Molecules”, In Dendrimer Chemistry: Concepts, Syntheses, Properties, Applications; Vögtle, F.; Richardt, G.; Werner, N., Eds.; Wiley: Weinheim, 2009, pp. 27–28.
  • Hawker, C. J.; Frechet, J. M. J. “Preparation of polymers with controlled molecular architecture. A new convergent approach to dendritic macromolecules”, J. Am. Chem. Soc. 1990, 112, 7638–7647.
  • Wooley, K. L.; Hawker, C. J.; Frechet, J. M. J. “Hyperbranched macromolecules via a novel double-stage convergent growth approach”, J. Am. Chem. Soc. 1991, 113, 4252–4261.
  • Morgenroth, F. “Spherical polyphenylene dendrimers via Diels-Alder reactions: the first example of an A4B building block in dendrimer chemistry”, Chem. Commun 1998, 1139–1140.
  • Kawaguchi, T.; Walker, K. L.; Wilkins, C. L.; Moore, J. S. “Double exponential dendrimer growth”, J. Am. Chem. Soc. 1995, 117, 2159–2165.
  • In, I.; Kim, S. Y. “Orthogonal synthesis of poly (aryl ether amide) dendrons”, Macromolecules 2005, 38, 9399–9401.
  • Toshima, N.; Yonezawa, T. “Bimetallic nanoparticles-novel materials for chemical and physical applications”, New J. Chem. 1998, 22, 1179–1201.
  • Antonietti, M.; Wenz, E.; Bronstein, L.; Seregina, M. “Synthesis and characterization of noble metal colloids in block copolymer micelles”, Adv. Mater. 1995, 7, 1000–1005.
  • Lopez-De Jesus, Y. M.; Williams, C. T. “PAMAM dendrimer-derived Ir/Al2O3 catalysts: an EXAFS characterization”, Catal. Lett. 2009, 132, 430–437.
  • Luo, X.; Imae, T. J. “Photochemical synthesis of crown-shaped platinum nanoparticles using aggregates of G4-NH2 PAMAM dendrimer as templates”, Mater. Chem. 2007, 17, 567–571.
  • Wan, H.; Li, S.; Konovalova, T. A.; Zhou, Y.; Thrasher, J. S.; Dixon, D. A.; Street, S. C. “Experimental and theoretical studies of the photoreduction of metal ion-dendrimer complexes: observation of a delocalized organic radical”, J. Phys. Chem. C 2009, 113, 5358–5367.
  • Juttukonda, V.; Paddock, R. L.; Raymond, J. E.; Denomme, D.; Richardson, A. E.; Slusher, L. E.; Fahlman, B. D. “Facile synthesis of tin oxide nanoparticles stabilized by dendritic polymers”, J. Am. Chem. Soc. 2006, 128, 420–421.
  • Hines, M. A.; Guyot-Sionnest, P. “Synthesis and characterization of strongly luminescing ZnS-capped CdSe nanocrystals”, J. Phys. Chem. 1996, 100, 468–471.
  • Peng, Z. A.; Peng, X. J. “Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor”, Am. Chem. Soc. 2001, 123, 183–184.
  • Ghosh, S.; Priyam, A.; Chatterjee, A.; Saha, A. “Size tunablity of CdTe crystallites in dendrimer nanocomposites and temperature dependent focusing of size distribution”, J. Nanosci. Nanotechnol. 2008, 8, 5952–5957.
  • Hwang, S. H.; Moorefield, C. N.; Wang, P.; Jeong, K. U.; Cheng, S. Z. D.; Kotta, K. K.; “Newkome, G. R. Dendron-tethered and templated CdS quantum dots on single-walled carbon nanotubes”, J. Am. Chem. Soc. 2006, 128, 7505–7509.
  • Wang, Y.; Peng, X. “RuRh bimetallic nanoparticles stabilized by 15-membered macrocycles-terminated poly(propylene imine) dendrimer: preparation and catalytic hydrogenation of nitrile-butadiene rubber”, Nano-Micro Lett. 2014, 6, 55–62.
  • Chung, Y. M.; Rhee, H. K. “Synthesis and catalytic applications of dendrimer-templated bimetallic nanoparticles”, Catal. Surv. Asia 2004, 8, 211–223.
  • Chung, Y. M.; Rhee, H. K. “Pt-Pd bimetallic nanoparticles encapsulated in dendrimer nanoreactor”, Catal. Lett. 2003, 85, 159–164.
  • Chung, Y. M.; Rhee, H. K. “Partial hydrogenation of 1, 3-cyclooctadiene using dendrimer-encapsulated Pd–Rh bimetallic nanoparticles”, J. Mol. Catal. A: Chem. 2003, 206, 291–298.
  • Peng, X.; Pan, Q.; Rempel, G. L.; Wu, S. “Synthesis, characterization, and application of PdPt and PdRh bimetallic nanoparticles encapsulated within amine-terminated poly (amidoamine) dendrimers”, Catal. Comm. 2009, 11, 62–66.
  • Liu, D.; Xie, H.; Lopez, Y. M.; Casper, M. D.; Ploehn, H. J.; Monnier, J.; Williams, C. T. Characterization and Kinetic Evaluation of Dendrimer-Derived Bimetallic Catalysts for the Selective Hydrogenation of 3,4-Epoxy-1-Butene. AIChE Annual Meeting, Cincinnati, OH, November 2005, p. 11602.
  • Nakamula, I.; Yamanoi, Y.; Imaoka, T.; Yamamoto, K.; Nishihara, H. “A uniform bimetallic rhodium/iron nanoparticle catalyst for the hydrogenation of olefins and nitroarenes”, Angew. Chem. Int. Ed. Engl, 2011, 123, 5830–5833.
  • Iyyamperumal, R.; Zhang, L.; Henkelman, G.; Crooks, R. M. “Efficient electrocatalytic oxidation of formic acid using Au@Pt dendrimer-encapsulated nanoparticles”, J. Am. Chem. Soc. 2013, 135, 5521–5524.
  • Song, Y. J.; López-De Jesús, Y. M.; Fanson, P. T.; Williams, C. T. “Preparation and characterization of dendrimer-derived bimetallic Ir-Au/Al2O3 catalysts for CO oxidation”, J. Phys. Chem. C, 2013, 117, 10999–11007.
  • Lang, H.; Maldonado, S.; Stevenson, K. J.; Chandler, B. D. “Synthesis and characterization of dendrimer templated supported bimetallic Pt-Au nanoparticles”, J. Am. Chem. Soc. 2004, 126, 12949–12956.
  • Hoover, N.; Auten, B.; Chandler, B. D. “Tuning supported catalyst reactivity with dendrimer-templated Pt-Cu nanoparticles”, J. Phys. Chem. B 2006, 110, 8606–8612.
  • Xie, H.; Liu, D.; Williams, C. T.; Ploehn, H. J. Synthesis and Characterization of Dendrimer-Stabilized Bimetallic Pt-Cu Nanoparticles. AIChE Annual Meeting, Cincinnati, OH, November 2005, p. 11581.
  • Bernechea, M.; García-Rodríguez, S.; Terreros, P.; de Jesús, E.; Fierro, J. L.; Rojas, S. “Synthesis of core-shell PtRu dendrimer-encapsulated nanoparticles. relevance as electrocatalysts for CO oxidation”, J. Phys. Chem. C 2010, 115, 1287–1294.
  • Luo, L.; Zhang, L.; Henkelman, G.; Crooks, R. M. “Unusual activity trend for CO oxidation on PdxAu140–x@ Pt core@ shell nanoparticle electrocatalysts”, J. Phys. Chem. Lett. 2015, 6, 2562–2568.
  • Marvin, K. A.; Thadani, N. N.; Atkinson, C. A.; Keller, E. L.; Stevenson, K. “Preparation and catalytic evaluation of ruthenium-nickel dendrimer encapsulated nanoparticles via intradendrimer redox displacement of nickel nanoparticles”, J. Chem. Comm. 2012, 48, 6289–6291.
  • Ye, H.; Crooks, R. M. “Effect of elemental composition of PtPd bimetallic nanoparticles containing an average of 180 atoms on the kinetics of the electrochemical oxygen reduction reaction”, J. Am. Chem. Soc. 2007, 129, 3627–3633.
  • Qian, L.; Yang, X. “Polyamidoamine dendrimers-assisted electrodeposition of gold-platinum bimetallic nanoflowers”, J. Phys. Chem. B 2006, 110, 16672–16678.
  • Aranishi, K.; Singh, A. K.; Xu, Q. “Dendrimer-encapsulated bimetallic Pt-Ni nanoparticles as highly efficient catalysts for hydrogen generation from chemical hydrogen storage materials”, ChemCatChem 2013, 5, 2248–2252.
  • Gates, A. T.; Nettleton, E. G.; Myers, V. S.; Crooks, R. M. “Synthesis and characterization of NiSn dendrimer-encapsulated nanoparticles”, Langmuir 2010, 26, 12994–12999.
  • Peng, X.; Pan, Q.; Lu, X. “Regioselective catalyzed modification of poly (methylhydro) siloxane using RuRh and RuPt bimetallic dendrimer-encapsulated nanoparticles”, J. App. Polym. Sci. 2011, 122, 334–341.
  • Carino, E. V.; Crooks, R. M. “Characterization of Pt@ Cu core@ shell dendrimer-encapsulated nanoparticles synthesized by Cu underpotential deposition”, Langmuir 2011, 27, 4227–4235.
  • Daniel, M. C.; Astruc, D. “Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology”, Chem. Rev. 2004, 104, 293–346.
  • Wilson, O. M.; Scott, R. W. J.; Garcia-Martinez, J. C.; Crooks R. M. Crooks R. M. “Synthesis, characterization, and structure-selective extraction of 1-3-nm diameter AuAg dendrimer-encapsulated bimetallic nanoparticles”, J. Am. Chem. Soc. 2005, 127, 1015–1024.
  • Scott, R. W. J.; Wilson, O. M.; Crooks, R. M. “Synthesis, characterization, and applications of dendrimer-encapsulated nanoparticles”, J. Phys. Chem. B 2005, 109, 692–704.
  • Schmid, G.; Lehnert, A.; Malm, J. O.; Bovin, J. O. “Ligand-stabilized bimetallic colloids identified by HRTEM and EDX”, Angew. Chem. Int. Ed. Engl. 1991, 30, 874–876.
  • Zhao, M.; Crooks, R. M. “Intradendrimer exchange of metal nanoparticles”, Chem. Mater. 1999, 11, 3379–3385.
  • He, J.; Ichinose, I.; Kunitake, T.; Nakao, A.; Shiraishi, Y.; Toshima, N. “Facile fabrication of Ag-Pd bimetallic nanoparticles in ultrathin TiO2-gel films: nanoparticle morphology and catalytic activity”, J. Am. Chem. Soc. 2003, 125, 11034–11040.
  • Gu, Y.; Xie, H.; Gao, J.; Liu, D.; Williams, C. T.; Murphy, C. J.; Ploehn, H. J. “AFM characterization of dendrimer-stabilized platinum nanoparticles”, Langmuir 2005, 21, 3122–3131.
  • Weir, M. G.; Knecht, M. R.; Frenkel, A.I.; Crooks, R. M. “Structural analysis of PdAu dendrimer-encapsulated bimetallic nanoparticles”, Langmuir 2010, 26, 1137–1146.
  • Knecht, M. R.; Weir, M. G.; Frenkel, A. I.; Crooks, R. M. “Structural rearrangement of bimetallic alloy PdAu nanoparticles within dendrimer templates to yield core/shell configurations”, Chem. Mater. 2007, 20, 1019–1028.
  • Kuchkina, N. V.; Morgan, D.G.; Kostopoulou, A.; Lappas, A.; Brintakis, K.; Boris, B. S.; Yuzik-Klimova, E. Y.; Stein, B. D.; Svergun, D. I.; Spilotros, A.; Sulman, M. G.; Nikoshvili, L. Z.; Sulman, E. M.; Shifrina, Z. B.; Bronstein, L. M. “Multicore iron oxide mesocrystals stabilized by a poly (phenylenepyridyl) dendron and dendrimer: role of the dendron/dendrimer self-assembly”, Chem. Mater. 2014, 26, 5654–5663.
  • Maclennan, A.; Banerjee, A.; Hu, Y.; Miller, J. T.; Scott, R. W. “In Situ X-ray absorption spectroscopic analysis of gold-palladium bimetallic nanoparticle catalysts”, ACS Catal. 2013, 3, 1411–1419.
  • Xiong, L.; Manthiram, A. “Effect of atomic ordering on the catalytic activity of carbon supported PtM (M = Fe, Co, Ni, and Cu) alloys for oxygen reduction in PEMFCs”, J. Electrochem. Soc. 2005, 152, A697–A703.
  • Wilson, O. M.; J. Scott, R. W.; Garcia-Martinez, J. C.; Crooks, R. “Separation of dendrimer-encapsulated Au and Ag nanoparticles by selective extraction”, M. Chem. Mater. 2004, 16, 4202–4204.
  • Ornelas, C.; Ruiz, J.; Salmon, L.; Astruc, D. “Sulphonated “Click” dendrimer-stabilized palladium nanoparticles as highly efficient catalysts for olefin hydrogenation and Suzuki coupling reactions under ambient conditions in aqueous media”, Adv. Synth. Catal. 2008, 350, 837–845.
  • Keilitz, J.; Nowag, S.; Marty, J. D.; Haag, R. “Chirally modified platinum nanoparticles stabilized by dendritic core-multishell architectures for the asymmetric hydrogenation of ethyl pyruvate”, Adv. Synth. Catal. 2010, 352, 1503–1511.
  • Ornelas, C.; Ruiz, J.; Salmon, L.; Astruc, D. ““Click” Dendrimers: Synthesis, redox sensing of Pd(OAc)2, and remarkable catalytic hydrogenation activity of precise Pd nanoparticles stabilized by 1,2,3-Triazole-containing dendrimers”, Chem. Eur. J. 2008, 14, 50–64.
  • Chandler, B. D.; Gilbertson, J. D. “Dendrimer-encapsulated bimetallic nanoparticles: synthesis, characterization, and applications to homogeneous and heterogeneous catalysis”, Top. Organomet. Chem. 2006, 20, 97–120.
  • Gross, E.; Toste, F. D.; Somorjai, G. A. “Polymer-encapsulated metallic nanoparticles as a bridge between homogeneous and heterogeneous catalysis”, Catal. Lett. 2015, 145, 126–138.
  • Li, Y.; Li, Y.; Liu, J. H. C.; Witham, C. A.; Huang, W.; Marcus, M. A.; Fakra, S. C.; Alayoglu, P.; Zhu, Z.; Thompson, C. M.; Arjun, A.; Lee, K.; Gross, E.; Toste, F. D.; Somorjai, G. A. “A Pt-Cluster-Based Heterogeneous Catalyst for Homogeneous Catalytic Reactions: X-ray absorption spectroscopy and reaction kinetic studies of their activity and stability against leaching”, J. Am. Chem. Soc. 2011, 133, 13527–13533.
  • Mizukoshi, Y.; Fujimoto, T.; Nagata, Y.; Oshima, R.; Maeda, Y. “Characterization and catalytic activity of core-shell structured gold/palladium bimetallic nanoparticles synthesized by the sonochemical method”, J. Phys. Chem. B 2000, 104, 6028–6032.
  • Vohs, J. K.; Fahlman, B. D. “Advances in the controlled growth of nanoclusters using a dendritic architecture”, New J. Chem. 2007, 31, 1041–1051.
  • Chandler, Bert D.; Gilbertson, J. D. “Dendrimer-encapsulated bimetallic nanoparticles: Synthesis, characterization, and applications to homogeneous and heterogeneous catalysis”, In Dendrimer Catalysis; Gade, L. H., Ed.; Springer-Verlag: Berlin, 2006; p. 114.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.